Precipitation

GG22A: GEOSPHERE \& HYDROSPHERE
Hydrology

Precipitation studies

- The hydrological aspects of precipitation studies are concerned with:
- The form of Precipitation.
- Its variation.
- The interpretation of measured rainfall data.

Generation of precipitation

- Condensation
- Coalescence
- Cooling

Warm air is able to hold more water than cool air. The dew point is the temperature to which a parcel of air must be cooled in order to become saturated.

Cooling of air

- Conductive cooling:
- air comes into contact with a colder surface, such as if it is blown from a liquid water surface onto cooler land
- Radiational cooling:
- emission of infrared from air or surface
- Evaporative cooling:
- addition of moisture to air cools or saturates it.
- Adiabatic cooling:
- air is forced to rise.

Adiabatic cooling

- Three main mechanisms for air to rise:
- Convergence (frontal/ non-frontal)
- Convection
- Orographic uplift

Adiabatic precipitation

Cyclonic:
Frontal: when warm moist air is forced to rise over a wedge of denser cold air.
- Non-Frontal: convergence and uplift in an area of low pressure (tropical wave, low pressure system in the westerlies).

\qquad

Adiabatic precipitation

- Convectional: \qquad
- Heating of the ground surface causing convectional currents of thermally unstable air.
- Produces intense rainfall of limited duration and areal extent.
\qquad
\qquad
\qquad
\qquad
\qquad

Adiabatic precipitation

- Orographic:
- Mechanical uplift or forcing of moist air over barriers (mountains, islands in oceans).
- Lifting may produce convectional instability convectional instability
which actually produces the which actually produce rainfall rather tha
orographic uplift.
- The intensity of
precipitation increases with the depth of the uplifted layer of moist air.

Precipitation measurement

- Point measurement
- Raingauges/ snowgauges
- Areal estimation (over a catchment)
- Interpolation of point measurements
- Radar and satellite

Measurement of rainfall

Point measurements:
• Rain Gauge:
• Non-Recording Rain
Gauges

Measurement of rainfall

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Gauge error

- Accuracy problems

- Wind turbulence: leads to underestimates.
- More significant the higher that the rim of the rain gauge is above the ground.
- Gauge can also act as an obstacle to wind flow which means rainfall is deflected and carried downwind.

Gauge error

- Rain gauges do not accurately record extreme rainfall events or high intensity rain, due to splash.

Gauges can be designed to minimise errors from splash

Gauge error

- Extreme rainfall may:
- be beyond the capacity of storage gauges
- cause recording gauges to malfunction,
- cause recording gauges to lose accuracy due to the time it takes for them to tip or siphon empty.
- Extreme events may also be localized and not be recorded by a single rain gauge, or may pass between gauges in a network.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Areal estimates

- Achieved by a network of gauges or by using additional radar and satellite information.
- Standard WMO guidelines for the density of rain gauge networks depending on the environment.

Areal estimates from point data

- Point measurements must be in representative locations.
- Rainfall can be estimated at unmeasured locations:
- Weighted average
- Thiessen polygons
- Interpolation
- isohyets
- inverse-square distance
- kriging

Areal estimates from point data

\qquad
\qquad
\qquad
\qquad

- Thiessen polygons for estimating mean catchment rainfall
- Weights the catches at each gauge by the proportion of the catchment area that is nearest to that gauge.

Thiessen polygon method

- Consists of attributing to each station an influence zone in which it is considered that the rainfall is equivalent to that of the station.
- The influence zones are represented by convex polygons.
- Polygons are obtained using the mediators of the segments which link each station to the closest neighbouring stations
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Thiessen polygon method

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Thiessen polygon method

Thiessen polygon method

Mean catchment rainfall, \bar{P} :

$$
\bar{P}=\frac{P_{1} A_{1}+P_{2} A_{2}+\ldots \ldots+P_{m} A_{m}}{\left(A_{1}+A_{2}+\ldots \ldots+A_{m}\right)}
$$

Generally, across M stations:

$$
\bar{P}=\frac{\sum_{i=1}^{M} P_{i} A_{i}}{A_{\text {total }}}=\sum_{i=1}^{M} P_{i} \frac{A_{i}}{A}
$$

The ratio $\frac{A_{i}}{A}$ is called the weighting factor of station i

Areal estimates from point data

- The isohyetal method
- Isohyets are lines of equal rainfall
- They are drawn between rain gauges, then the areas between the isohyets are calculated.

Isohyetal method

Isohyetal method

$$
\bar{P}=\frac{a_{1}\left(\frac{P_{1}+P_{2}}{2}\right)+a_{2}\left(\frac{P_{2}+P_{3}}{2}\right)+\ldots+a_{n-1}\left(\frac{P_{n-1}+P_{n}}{2}\right)}{A}
$$

$\bar{P}=$ mean precipitation over the catchment
$P_{1}, P_{2}, P_{3}, \ldots ., P_{n}=$ values of the isohytes
$a_{1}, a_{2}, a_{3}, \ldots ., a_{4}=$ inter isohytes areas
$A=$ catchment total area

Accuracy of areal estimates from point data

Areal estimates

Analysis of precipitation data

- Estimates of the average rainfall of an area.
- E.g. catchment rainfall
- Patterns and movements of individual storms.
- The occurrence of rainfall of different magnitudes. Estimation of the Probable Maximum Precipitation.

Temporal variations in precipitation

 records

- Stochastic Variations: random nature of precipitation.
- Total precipitation can be dominated by only a few storms or rain days.

Temporal variations in precipitation

 records

Fisure 2.8 Average diumnal variations of trintala st Concord, New Hampshive, in July and

- Periodic Variations: related to diurnal or annual cycles.
- Diurnal variations are greatest where the rainfall is derived from convective storms.
- The annual cycle is more obvious across most of the globe.

Occurrence of rainfall of different magnitudes

- Rainfall intensity-duration curves

Occurrence of rainfall of different magnitudes

- Depth-duration frequency curves
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Occurrence of rainfall of different magnitudes

- Depth-area duration curves

Probable maximum precipitation

- The physical upper limit to the amount of precipitation on a given area over a given time.
- The theoretically greatest depth of precipitation for a given duration that is physically possible over a \qquad particular drainage area at a certain time of year.

Probable maximum precipitation

- Methodology:

1. Maximization and transposition of real or modelled storms.
2. Plot maximum precipitation intensities by duration of actual recorded storms across the globe.

Summary

- Generation of precipitation
- Cooling of air: Conductive, Radiational, Evaporative, Adiabatic (cyclonic, convectional, orographic).
- Measurement and estimation:
- Rain guages; gauge errors; Thiessen polygons; Isohyets
- Weather Radar; satellite measurements; TRMM
- Analysis of rainfall:
- Temporal variations; rainfall magnitudes; probable maximum precipitation.

