

### Workshop - "The Science of Climate Change & Climate Change Vulnerability & Adaptation"

### **Methods & Technologies for Mitigation**

Climate Studies Group Mona (CSGM)- University of the West Indies.

Institute of Meteorology of Cuba (INSMET).

Presented by David Barrett – ENBAR Consulting (MSc., MPhil.).



#### Contents

- 1. Key Definitions.
- 2. Energy Efficiency and Conservation.
- 3. Low-Carbon Methodologies.
- 4. Opportunities in Transportation.
- 5. Opportunities in Industry.
- 6. Opportunities in Commercial Operation.
- 7. Carbon Sinks.
- 8. Policy Interventions.

#### Definitions

#### Mitigation:

A human intervention to <u>reduce the sources</u> or <u>enhance</u> <u>the sinks</u> of greenhouse gases.

(Glossary - IPCC Working Group I: The Scientific Basis).

- Interventions which limit or reduce climate change driving forces and hence reduce the <u>degree</u> and <u>likelihood</u> that significantly adverse conditions will result.
- Mitigation is therefore a risk management strategy needing <u>global</u> collaboration.



- 1. Key Definitions.
- 2. Energy Efficiency and Conservation.
- 3. Low-Carbon Methodologies.
- 4. Opportunities in Transportation.
- 5. Opportunities in Industry.
- 6. Opportunities in Commercial Operation.
- 7. Carbon Sinks.
- 8. Policy Interventions.

# ENERGY EFFICIENCY AND CONSERVATION.



### **Energy Efficiency**

- Latin America and the Caribbean could cut electricity consumption by 10 % over 20 yrs using EE technologies.
- Savings of \$36 Bn in investments that would otherwise have to be made to expand power generation capacity.

(Source – IDB).

Jamaican (Energy Efficiency) Building Code has potential to reduce national energy consumption by 40% (GEF/UNDP 2012).

### **GEF/UNDP Efficiency Project**



#### Estimated GHG Emission Reduction in Buildings to 2016 (Tons CO<sub>2</sub> Equivalent)

| PARTICIPATING<br>COUNTRY | DIRECT    | DIRECT-<br>POST | TOTAL<br>DIRECT | INDIRECT  | GRAND<br>TOTAL |
|--------------------------|-----------|-----------------|-----------------|-----------|----------------|
| Antigua &<br>Barbuda     | 160,000   | 200,000         | 360,000         | 840,000   | 1,200,000      |
| Belize                   | 65,000    | 400,000         | 465,000         | 1,085,000 | 1,550,000      |
| Grenada                  | 100,000   | 400,000         | 500,000         | 1,167,000 | 1,667,000      |
| St. Lucia                | 30,000    | 200,000         | 230,000         | 537,000   | 767,000        |
| Trinidad &<br>Tobago     | 880,000   | -               | 880,000         | 4,791,000 | 5,671,000      |
| SUB-TOTAL                | 1,235,000 | 1,200,000       | 2,435,000       | 8,419,000 | 10,854,000     |

EE Standards, energy labels, building integrated REN, policy, legislation, financing, PR, other.

Methods and Technologies for Mitigation

### **Energy Efficiency**

- EE is a useful <u>mitigation tool</u> as it reduces the amount of energy (hence fuel) required for the same amount of products and services as for non efficient means.
- Typical EE mitigation options include:
  - Insulation reducing heating/cooling needs.
  - Less energy intensive lighting or natural lighting.
  - Efficient engines and electrical devices operating on less fuels or producing more of the desired product (e.g. less heat in electricity generation).
  - Energy Efficient Building Designs.

### Insulation.

- Potential savings of up to 20% on heating and cooling costs (or up to 10% on their total annual energy bill) by sealing and insulating.
- Infrared Image of 2 Windows from Interior:
  - ENERGY STAR qualified window (orange) is warmer in the winter.
  - Other window (blue) 2/3 more heat loss than EE window.





### Insulation.

#### Insulation options:

- Insulation on AC and hot water pipes/ducts/conduits.
- Roofing insulation (foam, fiber pads).
- Roof reflective surfaces.
- Wall insulation (foam, fiber pads other).
- Green roofs.



Methods and Technologies for Mitigation





- CFLs & LEDs use 3 15 times less power (wattage) than incandescent lights.
- Saving up to 75% of the initial lighting energy vs. incandescent bulbs.
- Produce 90% less heat.
- Last 6–20 times as long (6,000–15,000 hours). (How CFLs Compare with Incandescent).
- Replace fluorescent exit lights with LED = savings of 0.25 tons CO<sub>2</sub>/yr. (USEPA)
- Natural lighting (windows, skylights, solar tubes).





### **Efficiency Improvements**

| Conversions.                                                                       | Efficiency<br>Improvements. |
|------------------------------------------------------------------------------------|-----------------------------|
| <ul> <li>Magnetic ballasts +T12 to<br/>electronic ballasts +T8 lighting</li> </ul> | 35 – 40 %                   |
| Incandescent to CFL                                                                | 75%                         |
| Electric water heaters to SWH                                                      | 70%                         |
| EE Refrigerators                                                                   | 16 – 25%                    |
| Standard to LED Displays                                                           | 25%                         |
| EE Air conditioners                                                                | 20%                         |
|                                                                                    |                             |

Methods and Technologies for Mitigation

CONSULTING

#### **Efficient Building Design**

- EE Building Designs may incorporate many features:
  - Radiant barriers.
  - Insulation.
  - Natural lighting.
  - PV & SWH.
  - Green roofs.
  - Other.



Margarido House - McDonald Construction & Development, Inc. California.

### **Energy Efficiency Buildings**

#### GEF-UNDP 48-month Project Projections:

- Mandatory EE Standards. Target: reduce national electricity consumption by 15 20%.
- National Building Code. Target: reduce energy consumption by 10 20% (passive energy designs).
- Rating-Based Incentive Schemes for Financing. Targets: energy savings of 20%.
- Rating Systems and Demonstration of Savings. Targets: 50% reduction in energy consumption by 2033.



- 1. Key Definitions.
- 2. Energy Efficiency and Conservation.
- 3. Low-Carbon Methodologies.
- 4. Opportunities in Transportation.
- 5. Opportunities in Industry.
- 6. Opportunities in Commercial Operation.
- 7. Carbon Sinks.

## 8. Policy Interventions. **METHODOLOGIES.**

### **Reducing Carbon Intensity**

#### Less Carbon Intense Fuels: CNG, NG, LPG.

- Replacement of gasoline and diesel with NG (CNG or LNG) in light duty vehicles.
- CNG facilitates GHG reduction ~ 30% in cars (gasoline) and 23% in buses (diesel) (CCCC Technology Assessment Report 2012).
- LNG facilitates GHG reductions as high as 25% (U.S. Department of Energy Alternative Fuels & Advanced Vehicles Data Centre).
- LPG(propane) as a replacement of (diesel or gasoline) in light duty vehicles. Gasoline engines emitting approximately 20% more GHGs than LPG vehicles.
- Approx 19% reduction in GHG emissions in NG ferries versus conventional diesel vessels (Norway). (CCCC Technology Assessment Report 2012).

### **Reducing Carbon Intensity**

#### Less Carbon Intense Fuels: Biofuels

- Life-cycle GHG emission reductions of 44% and 26% for 100 year and 30 year assessment period from sugarcane based ethanol.
- Waste derived biofuels (e.g., waste grease biodiesel) can achieve significantly higher life-cycle reductions in GHGs. (USEPA).
- Biodiesel contains 11% oxygen by wt. => more complete combustion.
- B20 B100 reduces net  $CO_2$  emissions by 15%; HC, SO<sub>x</sub>, CO, TSP, PM<sub>10</sub> also reduced (slight elevation in NO<sub>x</sub>).
- B5, B10 biofuels do not require engine retrofits. Biodiesel and ethanol can be blended with conventional fuels or full substitution.

### **Reducing Carbon Intensity.**

#### -NBAR

#### ✤ Advanced biofuels for aviation.

- Lufthansa.
- Virgin Atlantic.
- Quantas.
- KLM.
- Royal Dutch Air Force.
- US Air Force.
- British Airways.



- 2009 Jamaica edible waste oil bio-diesel for 20 solid waste trucks. Emission control and fuel savings.
- Savings of 20% in fuel and operational cost.
- Biodiesel consistency close to that of distillates.

### Caribbean RE Potentials (MW)

| Country              | Wind         | Hydro                       | Solar-<br>Thermal<br>& PV | Geo-<br>thermal | Bio-<br>mass | Potential for<br>RES coverage<br>(estimate) |
|----------------------|--------------|-----------------------------|---------------------------|-----------------|--------------|---------------------------------------------|
| Dominica             | ✓<br>10 - 20 | <b>√5 Ex.+</b><br>5 (add.)  | ✓                         | ✓               | (√)          | Up to 100%                                  |
| Grenada              | ✓<br>20 - 30 | √<br>2                      | ✓                         | ?               | (√)          | 10 - 30%                                    |
| St. Lucia            | ✓<br>20 - 40 | < 0.5                       | √                         | ✓               | ?            | Up to 60 %                                  |
| St. Kitts &<br>Nevis | ✓<br>5 – 10  | 0                           | ✓                         | ✓               | ?            | Up to 60 %                                  |
| SVG                  | √<br>20+     | <b>√5 Ex.</b> +<br>5 (add.) | ✓                         | ✓               | (√)          | 30 - 40 %<br>Source: GTZ                    |





<u>SOLAR</u> is possibly the most resilient and ubiquitous domestic and commercial application.

- Photovoltaic Power.
  - Zero emission and avoided CO<sub>2</sub>. (E.g., 1.52 KW PV system avoids annually, 465.90 lbs
     CO2; 0.90 lbs NOx.; 2.56 lb SOx; 3.96 mg
     Hg).



- Modular to provide incrementally affordable commercial power or domestic supply.
- 1,540 MWh PV saves 1,260 tCO2/yr.



Various Proposals:

- ◆ 250 SHW in 10 yrs to reduce GHG by 14,000 tons CO<sub>2</sub> equivalent (Antigua & Barbuda, Belize, Grenada, St Lucia, T&T).
- 100 kW PV to reduce GHG by 6,300 tons of CO<sub>2</sub> over 20 years (Antigua & Barbuda, Belize, Grenada, St Lucia, T&T) (GEF/UNDP).
- ◆ 60 MW PV farm (Jamaica) (Solamon Energy Corp, 2012)
- I MW PV (1,540 MWh/yr) farm at Soapberry to reduce FF use and methane GHG emissions by 1,261 t CO<sub>2</sub>/yr (Jamaica).

### Solar Thermal (SWH):

- Zero emissions and avoided emissions. 100 liter system could avoid emission of 1.5 tones of CO<sub>2</sub>/yr.
- Applicable for residential and commercial applications (hospitals, offices, processing facilities etc).



a52-302724 fotosearch.com

### Wind Potentials



CONSULTING

### **Wind Potentials**

#### CONSULTING

| Country        | Project                                | Level Of<br>Preparation                                              | Potential<br>Developer                  | Status Of Financing/<br>Observations                                                   |
|----------------|----------------------------------------|----------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------|
| St. Lucia      | 12.6 MW Wind<br>Park (Sugar Mill)      | Pre-Feasibility, site selection, wind data analysed                  | LUCELEC                                 | KfW is preparing financing offer (expected in Dec 2007).                               |
| St.<br>Vincent | 7.2 MW Wind<br>Park (Ribishi<br>Point) | Pre-Feasibility, site selection, wind data analysed                  | VINLEC                                  | KfW is preparing financing<br>offer (expected in Dec 2007)<br>for wind park and hydro. |
| Barbados       | 10 MW Wind<br>Park (Lamberts)          | Feasibility study, EIA,<br>financing secured<br>through EIB          | Barbados<br>Light and<br>Power<br>(BLP) | EIB has committed financing.                                                           |
| Grenada        | 10 MW (SE<br>Grenada).                 | Land negotiations on-<br>going, wind measure-<br>ments starting soon | GRENLEC                                 | GRENLEC expressed interest to join CAWEI.                                              |

Future Projects:

(1) St. Kitts & Nevis (approx. 3 MW); (2) Aruba (approx. 5-8 MW); (3) Cuba (up to 100 MW). Existing - Jamaica 21 MW +18 MW + 3 MW.

(Source: Caribbean Wind Power Initiative [CAWEI]).

### **Hydropower Potentials**

| Country        | Project                                                                                       | Level of<br>Preparation                                | Potential<br>Developer    | Remarks                                                                                                                    |
|----------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Jamaica        | Great Laughland<br>River Hydropower<br>Project + Maggoty<br>(2 + 6.3 MW)                      | Feasibility,<br>financial and<br>economic<br>analysis. | PCJ ,<br>WWF Ltd.<br>JPS. | PCJ interested , EIA and<br>business plan required,<br>land issue is pending.<br>Maggoty launch 2012.                      |
| St.<br>Vincent | Richmond<br>Hydropower<br>Station upgrading<br>and extension<br>project (1.2 to 1.5<br>MW)    | Feasibility,<br>some<br>construction<br>work started.  | VINLEC                    | VINLEC's Board decision to<br>implement.<br>Call for interest published<br>(2007).<br>KfW preparing financing<br>offer.    |
| St.<br>Vincent | South River<br>Hydropower<br>Station upgrading<br>and extension<br>project (1.1 to 1.3<br>MW) | Feasibility, some<br>construction<br>work started.     | VINLEC                    | VINLEC's Board decision to<br>implement.<br>Call for interest published<br>(2007).<br>KfW is preparing financing<br>offer. |

(Source: GTZ)



- 1. Key Definitions.
- 2. Energy Efficiency and Conservation.
- 3. Low-Carbon Methodologies.
- 4. Opportunities in Transportation.
- 5. Opportunities in Industry.
- 6. Opportunities in Commercial Operation.
- 7. Carbon Sinks.
- 8. Policy Interventions.

## OPPORTUNITIES IN TRANSPORTATION

- BIODIESEL B20 reduces total hydrocarbon emissions, NOx, SOx, CO, TSP, PM<sub>10</sub>.
- B100 reduces net CO<sub>2</sub> by 78% due to carbon recycling by the soy plants.
- Net  $CO_2$  emissions are reduced by 15%.





#### e.g. Jathropha saccharum and castor.

Methods and Technologies for Mitigation

#### World Ethanol Production Forecast 2008 - 2012

|                   |        | Millions of Gallons |        |        |        |         |
|-------------------|--------|---------------------|--------|--------|--------|---------|
|                   | 2008   | 2009                | 2010   | 2011   | 2012   | CAGR, % |
| Brazil            | 4,988  | 5,238               | 5,489  | 5,739  | 5,990  | 2.80%   |
| U.S.              | 6,198  | 6,858               | 7,518  | 8,178  | 8,838  | 5.70%   |
| China             | 1,075  | 1,101               | 1,128  | 1,154  | 1,181  | 1.40%   |
| India             | 531    | 551                 | 571    | 591    | 611    | 2.20%   |
| France            | 285    | 301                 | 317    | 333    | 349    | 3.20%   |
| Spain             | 163    | 184                 | 206    | 227    | 249    | 6.90%   |
| Germany           | 319    | 381                 | 444    | 506    | 569    | 9.70%   |
| Canada            | 230    | 276                 | 322    | 368    | 414    | 9.90%   |
| Indonesia         | 76     | 84                  | 92     | 100    | 108    | 5.60%   |
| Italy             | 50     | 53                  | 55     | 58     | 60     | 2.80%   |
| Rest of the World | 2,302  | 2,548               | 2,794  | 3,040  | 3,286  | 5.70%   |
| World Totals      | 16,215 | 17,574              | 18,934 | 20,293 | 21,653 | 4.60%   |

Source: Market Research Analyst<sup>®</sup> 2008

SIDs and LDCs can participate (e.g. Cuban <u>potential</u> ~ 3.0 billion gal. per annum from sugar. Jamaica production of fuel ethanol 70 – 80 million gallons/annum for expansion

Methods and Technologies for Mitigation

## GHG reduction (C-fixing) and project funding.

- E.g. Jamaica's motor vehicle fleet using E10 can consume approximately 68 million liters of ethanol (approx 10,000 ha of cane or 800,000 t of sugar cane).
- Estimated to produce 3% less
   GHG emissions in miles
   travelled /gallon.



Source - Petrojam Ethanol Ltd., 2008.



Methods and

Source – Jamaica Broilers Ethanol, 2008.



- LPG and CNG cars results in 10-15% reduction in CO<sub>2</sub> relative to petrol cars, similar to diesel vehicles. Energy Saving Trust (EST).
- New factors for LPG and CNG cars were calculated based on an average 12.5% reduction in CO<sub>2</sub> emissions relative to the emission factors for petrol cars.
- Due to the significant size and weight of the LPG and CNG fuel tanks, only medium and large sized vehicles are available.

#### GHG Emissions / Mile for a Passenger Car



Source – David Harris Jr., General Manager Transportation Services, Harvard University. 2006



#### Carbon Intensity of Alternative Fuels in California Light-Duty Vehicles



 Intensity of life cycle GHG emissions of alternative fuels in LDV. Greatest GHG benefits - CNG from landfills, ethanol from forest waste and electricity.

(Source: California's Low Carbon Fuel Standard Final Regulation Order, April 15, 2010)

Methods and Technologies for Mitigation

Kilotonnes of

#### Reduce number of individual LDV-Gasoline.

LDV gasoline
 vehicles have
 high GHG
 impact.

- Total national fleet.
- Emission/ unit.

#### Increase diesel fleet & mass transport.

| Canadian greenhouse gas emissions         |  |
|-------------------------------------------|--|
| from on-road transportation sources, 2004 |  |

| CO2                                        | equivalent? |
|--------------------------------------------|-------------|
| Gasoline Automobiles                       | 47,800      |
| Light-Duty Gasoline Trucks                 | 41,000      |
| Heavy-Duty Gasoline Vehicles               | 4,010       |
| Motorcycles                                | 214         |
| Diesel Automobiles                         | 750         |
| Light-Duty Diesel Trucks                   | 873         |
| Heavy-Duity Diesel Vehicles                | 44,400      |
| Propane & Natural Gas Vehicles             | 837         |
| Total (18.5% of national emissions)        | 139,884     |
| Source: Environment Canada National CHC In | vantony     |

IVIETNOAS ANA TECNNOLOGIES FOR IVIITIGATION

David Barrett

Source

#### Fuel Efficient Vehicles:

- Fuel efficiency reduces fuel consumption and emissions of GHGs.
- Flex fuel vehicles (FFVs) efficient, less C-intense clean fuel.
- Hydrogen vehicles efficient; zero  $CO_2$  emission.
- Hybrid electric drive trains (fuel+electric) up to approx. 50% reduction in GHGs in light duty vehicles.



Methods and Technologies for Mitigation



Source: Life Cycle Energy & GHG Emission Impacts of Different Corn Ethanol Plant Types (2007) and DOE Biomass Program.

Methods and Technologies for Mitigation

#### **Upstream Emissions**

Energy source for alternative fuel vehicles can determine overall GHG emissions.

Source: www.scotland. gov.uk/Publicati ons/2009/06/25 103442/5.



- Grid mix scenario A: 450gCO<sub>2</sub>/kWh equivalent to current grid mix
- Grid mix scenario B: 351gCO<sub>2</sub>/kWh equivalent to a new combined cycle gas turbine plant
- Grid mix scenario C: 176gCO<sub>2</sub>/kWh increased renewables and use of CCs with coal

Methods and Technologies for Mitigation



#### Car Pooling in Tour Sector:

- Tour operators share vehicles and costs = reduced number of trips of vehicles and emissions.
- E.g. Tobago and Miami (protected areas, eco-sensitive areas etc.).

#### Operational Maintenance:

- Fleet renewal to more modern and efficient units.
- Engine retrofits and upgrades for fuel efficiency improvements (fuel injection, compression, turbo charger).

#### -NBAR

#### **Clean Buses Versus Traditional Vehicles**

Mass transit in developing countries generates far fewer greenhouse-gas emissions per passenger than private vehicles do.

Mode CO,-equivalent emissions per passenger-kilometer (estimated range) Average occupancy gasoline diesel CAR natural gas 2.5 people electric two-stroke SCOOTER four-stroke 1.5 gasoline MINIBUS 12 diesel diesel BUS natural gas 40 hydrogen fuel cell 0 g 75 175 25 50 100 125 150 Sources: International Energy Agency; \*Transportation in Developing Countries", Pew Center on Global Climate Change THE NEW YORK TIMES Methods and Technologies for Mitigation

#### Mass transportation as as tool for GHG reduction.

 Less C-intense fuels increase benefits.



#### Efficiency, Fuel Switching and Retrofitting:

- Retrofitting aerodynamic additions (e.g. winglets) cuts turbulence with potential fuel savings of up to 6% CO<sub>2</sub>.
- Advanced biofuels for aviation reduces GHG emissions.
- Use of renewables (e.g., Wind) for mass transportation (e.g. wind power for above rail systems in Calgary, Canada).



- CALCULATE EMISSIONS FOR MEDIUM PETROL (GASOLINE) CAR (10,000 MLS/YR) (table 6b).
- CALCULATE EMISSION FOR MEDUIM DIESEL CAR. (10,000 MLS/YR) (table 6c).
- CALCULATE EMISSIONS FOR MEDIUM HYBRID AND CNG CAR (10,000 MLS/YR) (table 6d).
- CALCULATE EMISSIONS FOR DIESEL VAN > 3.5 TONNES (table 6i).\* (8,500lbs = 3.8 t)



- 1. Key Definitions.
- 2. Energy Efficiency and Conservation.
- 3. Low-Carbon Methodologies.
- 4. Opportunities in Transportation.
- 5. Opportunities in Industry.
- 6. Opportunities in Commercial Operation.
- 7. Carbon Sinks.
- 8. Policy Interventions.

## OPPORTUNITIES IN INDUSTRY

#### PROCESS RELATED EMISSIONS 1 PROCESS **EMISSION** CO<sub>2</sub> CH₄ N<sub>2</sub>O PFC SF<sub>6</sub> HFC Mineral Products Cement Production Lime Production Limestone Use<sup>2</sup> Soda Ash Production and Use Fletton Brick Manufacture<sup>3</sup> Chemical Industry Ammonia Nitric Acid Adpic Acid Urea Carbides Caprolactam Petrochemicals Metal Production Iron, Steel and Ferroalloys Aluminium Magnesium Other Metals Coal mining Energy Industry Solid fuel transformation Oil production Gas production and distribution Venting and flaring from oil/gas production Production of Halocarbons Other Use of Halocarbons and SF6

Organic waste management

#### CO<sub>2</sub> Emissions (Gg) from Industrial Processes & Product Use: 2000 to 2005



Jamaica's Green House Gas Emissions, 2000 - 2005, Claude Davis & Associates. Second National Communications – UNFCCC.

#### Generation Emissions Ib-CO<sub>2</sub> per Million Btu



EIA – "Voluntary Reporting of Greenhouse Gases Program Fuel & Energy Source Codes & Emission Coefficients"

## CO2 Emission from Coal fired power generation by technologies



### **Heat & Power**

#### POWER GENERATION Sectoral CO<sub>2</sub> Emissions: 2000 is a primary 12,000 10.066 contributor to $CO_2$ 10,000 emissions due to fossil 8,000 fuel use. 6.000 8 4,000 Generation can 2,000 537 36 account for 66% (e.g. 0 Trinidad) and higher -2.000 FORSOTHERLAND (e.g. Bahamas, St. Lucia) of total $CO_2$ Emission (Trotz, 2007).

Jamaica's Green House Gas Emissions, 2000 - 2005, Claude Davis & Associates. Second National Communications – UNFCCC.

Methods and Technologies for Mitigation

## Heat & Power

#### Biomass (e.g. Sugar Industry):

- Fuelwood + bagasse (Internal + Export power
   = 15 MW).
- Plantation > 8,000 Ha; 170,000 t/year; 50 M
   Trees [5 yrs]
- Total Generation = 190,000,000 kWh-yr.

#### Mitigation Benefits:

- Avoided CO<sub>2</sub> generation per annum (248 M litres of diesel) = <u>755,000 tons CO<sub>2</sub></u>.
- ← CO<sub>2</sub> sequestered = <u>480,000 tons CO<sub>2</sub></u> (80% C-closure by trees & cane; 15 yrs).





## Heat & Power

- <u>GEOTHERMAL</u> negligible GHG emissions  $(CO_2)$ .
- Process heat qualities not available in all LDCs, SVEs and SIDs.
- Potential for displacing significant amount of CO<sub>2</sub> emissions from FF for heat and power (mifigation).
- Intra-regional export opportunities (e.g. Nevis total potential for 900MW; plans for 50 MW plant and sale of 35 MW to neighbours). (increasing energy security and reduced need for new FF plants).





Methods and Technologies for Mitigation

#### ay2009





- <u>WIND</u> is critical to the power sector zero emissions and energy security.
- Resource is site specific.
- Climate change agreements may increase CDM project potentials.



| CAPACITY                                               | WIGTON WIND<br>FARM                    |
|--------------------------------------------------------|----------------------------------------|
| Installed Capacity<br>(23 NegMicron Vesta X 900<br>kW) | 20.7 MW                                |
| Average Output                                         | 7.0 MW                                 |
| Estimated Manual Output                                | 62.97 GWH                              |
| Estimated CO <sub>2</sub> Reduction                    | <b>52,250 tCO<sub>2</sub>e per yr.</b> |

- Diversion type <u>HYDROPOWER SYSTEMS</u> are suited to many SIDs, LDCs and SVEs. zero CO<sub>2</sub> emissions.
- Reduced energy imports and GHG emissions:
  - E.g. 21.5 MW; approx. 88GWh.
  - Avoided 162,000 tonnes of CO<sub>2</sub> [No. 4 Fuel oil/Diesel].
  - Potentially savings of USD 19.8 M @ USD115/bbl\*.(\*21/8/2008).





Methods and Technologies for Mitigation

### Waste Facilities & Power

- <u>WTE</u> landfill gas and wastewater/sewerage for power.
- CH<sub>4</sub> capture and utilization potential GHG trading financing.
- Limited by low volume flows in SIDs and disorganised disposal sites.
  - E.g.. Jamaica disposal of approx. 950,000 tonnes/yr.
  - Organic content is approx. 65% with a potential for generating 15 MW at US\$ 0.08 cents/kWh.



Jamaica's Green House Gas Emissions, 2000 - 2005, Claude Davis & Associates. Second National Communications – UNFCCC.

Methods and Technologies for Mitigation



## ACTIVITY – GHG EMISSIONS BY FUEL TYPE

Methods and Technologies for Mitigation



1. Key Definitions.

- 2. Energy Efficiency and Conservation.
- 3. Low-Carbon Methodologies.
- 4. Opportunities in Transportation.
- 5. Opportunities in Industry.
- 6. Opportunities in Commercial Operation.
- 7. Carbon Sinks.
- 8. Policy Interventions.

## CARBON SINKS.

### **Carbon Capture & Storage**

- Carbon capture and storage(CCS) technology captures CO<sub>2</sub> for storage underground.
- Increases building and operational costs while reducing power output.
- Careful selection and monitoring of geologic storage (or "sequestration") sites.
- Regulatory Standards and mechanisms needed to minimize the environmental risks of CO<sub>2</sub> leakage (including groundwater contamination).



- CCS technology for coal-fired power plants CO<sub>2</sub> captured and injected into geologic formations (e.g. depleted O&G reservoirs, unmineable coal seams, or saline aquifers).
- Commercial scale demonstration projects. (Source: Alberta Geological Survey).

Methods and Technologies for Mitigation

### **Carbon Capture & Storage**

IPCC - CCS could contribute 10% - 55% of the cumulative worldwide carbon-mitigation effort over the next 90 years.

2011 - total CO<sub>2</sub> storage capacity of 14 projects in operation or under construction is estimated at over 33 million tonnes/year (equivalent to approx. emissions from six million cars/yr).



#### **Carbon Sequestration**

- Agricultural soil of the LAC Region have lost, due to past agricultural practices, an average of 30-40 Mg C.ha-1.
- Carbon sequestration by soils is finite, and smaller that the historical loss.
- Mitigation potential in storing carbon in soils would decline after a period of 30 to 50 years.
- IPCC 4<sup>th</sup> Assessment Report technical mitigation potential of the LAC Region is 0.76 Pg CO2-e.g. per year (14% of global potential in agriculture).

(CC Mitigation in Agriculture in LAC, Daniel Martino - Carbosur 2011).



- 1. Key Definitions.
- 2. Energy Efficiency and Conservation.
- 3. Low-Carbon Methodologies.
- 4. Opportunities in Transportation.
- 5. Opportunities in Industry.
- 6. Opportunities in Commercial Operation.
- 7. Carbon Sinks.
- 8. Policy Interventions.

## **POLICY INTERVENTIONS**

Methods and Technologies for Mitigation



### National Strategies for Mitigation Plans.

- Identify the large sources of emissions.
- ID the available and affordable technologies.

Sources of U.S. Heat-Trapping Emissions in 2005 (Source: U.S. EIA, 2008)



Methods and Technologies for Mitigation



### Policy Interventions.

- Specific policies and associated policies which facilitate economic, technical and financial feasibility of the various technologies.
- Regulatory frameworks for market mechanisms, and command and control mechanisms to encourage GHG mitigation,
- Strategic plans for energy forecasting, transportation, industrial initiatives.
- Capacity building for expertise within Government Ministries.
- Public education and sensitisation.
- Regional collaboration.

#### A Snapshot of Selected China Energy Options Today: Climate and Energy Security Impacts and Tradeoffs in 2025



#### A Snapshot of Selected U.S. Energy Options Today: Climate and Energy Security Impacts and Tradeoffs in 2025

