# Introduction to Climate Data Homogenization techniques

## By Thomas Peterson

## Using material stolen from Enric Aguilar\*

CCRG Geography Unit Universitat Rovira i Virgili de Tarragona Spain

\* Who in turn stole material prepared by Lucie Vincent, Climate Research Branch, Meteorological Service of Canada Environment Canada

## Objective

Detecting steps in climatological time series, even without the prior knowledge of the position in time and magnitude of the inhomogeneity

## USING WORKSHOP SOFTWARE TO TEST HOMOGENEITY OF TIME SERIES

- 1) CHECKING THE DATA
- 2) CHECKING INDICES
- 3) HOMOGENEITY TESTING BASED ON REGRESSION MODELS: F-test for the comparison of regression models and for detecting the position in time and magnitude of significant steps (VERY RECENTLY implemented in Rclimdex; Fortran program available)

### CHECKING THE DATA



DAILY VALUES OF DTR FOR BADAJOZ, SPAIN, 1864-1884.
Notice obvious change in DTR between 1878 & 1879. File was produced with Rclimdex's QC utility

## CHECKING THE INDICES (I)



Data for Madrid, Spain (nonhomogenized)

Obvious Change in DTR index values IN 1893.

Metadata reports a change in shelter

## CHECKING THE INDICES. CONTRASTING STATIONS (II)



DTR INDEX: RESULTS FOR MADRID (LEFT) LOOK VERY DIFERENT TO RESULTS FOR BADAJOZ, HUESCA & CÁDIZ (RIGHT, TOP TO BOTTOM) SOME NATION-WIDE PROBLEMS MAY NEED CONTRAST TO FOREIGN STATIONS



## Techniques for the detection of discontinuities in climatological series

- Many techniques developed and applied on annual and monthly temperature and precipitation
- Techniques based on statistical approach
- Detailed review in Peterson et al. 1998
- New updated homogeneity evaluation from European COST-HOME project

- Bayesian Approach
   Perreault et al. 2000 INRS, Canada
- Caussinus Mestre Technique
   Caussinus & Mestre 1996 Meteo-France
- Multiple Analysis of Series for Homogenization (MASH)
   Szentimrey 1996 Hungarian Meteorological Service
- Multiple Linear Regression
   Vincent 1998 Climate Research Branch, Canada
- Potter's Method Potter 1981 - ?
- Standard Normal Homogeneity Test
   Alexandersson 1986 Swedish Meteorological Institute
- Two-Phase Regression
   Easterling & Peterson 1995 NCDC, USA
   and many more ...

## Technique based on regression models

(Easterling & Peterson 1995; Vincent 1998; Lund & Reeves 2002)

```
Model 1:
    y_i = a_1 + b_1 t_i + e_i
    where y_i: candidate series
            t<sub>i</sub>: time
Model 2:
   y_i = a_2 + b_2 t_i + c_2 I_i + e_i
   where I_i = 0 for I = 3,...,p-1
           I_i = 1 for I = p,...,n-3
F^* = [(SSE1-SSE2)/1] / [SSE2/(n-3)]
      if F^* > F_{max} accept Model 2
                         (F_{max}: Wang 2003)
```



#### Model 1:

 $y_i = 1.1 - 0.016t_i + e_i$ SSE1 = 20.7

#### Model 2:

 $y_i = 0.9 + 0.007t_i - 1.3I_i + e_i$ date of the step = 1952 magnitude = -1.3°C SSE2 = 11.9

F\* = 59.1 > 11.1 therefore there is a step in 1952





#### Model 1:

$$y_i = 0.7 + 0.019t_i + e_i$$
  
 $SSE1 = 8.6$ 

#### Model 2:

 $y_i = 1.0 - 0.020t_i + 0.9I_i + e_i$ date of the step = 1939 magnitude =  $0.9^{\circ}C$ SSE2 = 6.3

F\* = 11.3 > 11.1 therefore there is a step in 1939





#### Model 1:

$$y_i = -0.1 + 0.002t_i + e_i$$
  
 $SSE1 = 2.59$ 

#### Model 2:

$$y_i = -0.1 + 0.007t_i - 0.2I_i + e_i$$
  
date of the step = 1965  
magnitude = -0.2°C  
SSE2 = 2.58

 $F^* = 0.01 < 11.1$ therefore there is no step in 1965







### METADATA & STATISTICS

| INM<br>code | Name  | Address                    | Location   | Lon       | Lat             | Altitude | Starts     | Ends       |
|-------------|-------|----------------------------|------------|-----------|-----------------|----------|------------|------------|
| 2030        | SORIA | Instituto 2ª<br>Enseñanza  | ۶۶         | 02º 28' W | 41º 49'<br>10'' | 1058.5 m | 01/09/1871 | 31/12/1879 |
| 2030        | SORIA | Instituto 2ª<br>Enseñanza  | <u>;</u> ؟ | 02º 28' W | 41º 49'<br>10'' | 1058.5 m | 01/01/1880 | 28/02/1893 |
| 2030        | SORIA | Instituto 2ª<br>Enseñanza  | ?3         | 02º 28' W | 41º 49'<br>10'' | 1058.5 m | 01/03/1893 | 30/10/1893 |
| 2030        | SORIA | Instituto 2ª<br>Enseñanza  | ?3         | 02º 28' W | 41º 49'<br>10'' | 1058.5 m | 01/11/1893 | 31/12/1900 |
| 2030        | SORIA | Instituto 2ª<br>Enseñanza  | ?3         | 02º 28' W | 41º 49'<br>10'' | 1058.5 m | 01/01/1901 | 1910       |
| 2030        | SORIA | Instituto 2ª<br>Enseñanza  | Jardín     | 02º 28' W | 41º 49'<br>10'' | 1058.5 m | 1911       | 31/12/1942 |
| 2030        | SORIA | Piso c/ Navas de<br>Tolosa | Terraza    | 02º 28' W | 41º 46'         | 1083 m   | 01/11/1943 | 31/12/2002 |

ANNUAL Homogenouse test statistics report:

Year=1919, Fstat=3.3462, pval=0.9254, Fm90=9.26, Fm95=11.15, Fm99=15.75, StepSize=0.4, SegmLen=44 Year=1946, Fstat=7.1762, pval=0.9902, Fm90=9.3, Fm95=11.09, Fm99=15.23, StepSize=0.41, SegmLen=57 Year=1981, Fstat=7.6858, pval=0.9924, Fm90=9.3, Fm95=11.09, Fm99=15.23, StepSize=0.76, SegmLen=57



#### CONCLUSIONS

- HOMOGENIZATION ASSESSMENT ON AN ANNUAL/MONTHLY BASIS WILL PREVENT MAJOR INHOMOGENEITIES TO CORRUPT THE TRENDS ANALYSIS, DISCARDING SERIES OR INHOMOGENEOUS SEGMENTS
- EVEN WHEN A CANDIDATE STATION IS/LOOKS HOMOGENEOUS AT MONTHLY & ANNUAL SCALE, INHOMOGENEITIES MAY REMAIN ON A DAILY BASIS

