Calculating climate indices using RClimdex

By Lucie Vincent

Climate Research Branch
Environment Canada
Capacity building workshop on Data Rescue and Climate Change Indices The University of the West Indices, Mona, Jamaica 7-10 May 2012

Background

- RClimdex produces the 27 indices recommended by the CCI/CLIVAR Expert Team for Climate Change Detection, Monitoring and Indices
- carefully selected to cover many aspects of the changing global climate
- valuable to evaluate the potential impact of climate change on our activities, agriculture, economy
- useful for monitoring climate change on a global basis

Approach to calculate climate indices

Based on fixed threshold value:

- summer days (days with $+\max >25^{\circ} \mathrm{C}$)
- heavy precipitation days (days with prec $>10 \mathrm{~mm}$)
$>$ Easy to understand but not significant to all regions of the world:
- ice days (days with $t \max <0^{\circ} \mathrm{C}$) are not too frequent in the Caribbean!

Based on variable threshold value:

- warm nights (\% days when t min $>90^{\text {th }}$ percentile)
- very wet days (total prec when prec $>95^{\text {th }}$ percentile)
$>$ More difficult to interpret but facilitate comparison between different parts of the world

Calculation of the percentiles

Temperature indices

- $10^{\text {th }} \& 90^{\text {th }}$ percentiles calculated from 1961-1990
- percentiles obtained for each day of the year using a 5 -day window centered at the calendar day Jones et al. 1999
- new approach based on bootstrap methodology developed by Zhang et al. 2004 to obtain percentiles within the base period to provide

Minimum temperature at De Bilt
 temporally consistent estimate of threshold in and out the base period

Precipitation indices

$95^{\text {th }} \& 99^{\text {th }}$ percentiles calculated from all days during the year when prec $>1 \mathrm{~mm}$ during 1961-1990

Missing values

- indices are calculated on
- monthly and annual bases
- annual basis only
- indices calculated on monthly basis
- if number of days missing > 3 days then monthly value missing
- indices calculated on annual basis
- if number of days missing >15 days or monthly value is missing then annual value missing

Definition of temperature indices

 (16 indices)Cold Extremes
Frost days ($\mathrm{t} \min <0^{\circ} \mathrm{C}$)
Ice days (tmax < $0^{\circ} \mathrm{C}$)
Monthly lowest value in tmax
Monthly lowest value in tmin
Cold nights (\% days w tmin < $10^{\text {th }}$ perc.)
Cold days (\% days w tmax < $10^{\text {th }}$ perc.)
Cold spell duration index (count of days w at least 6 cons. days $w+m i n>10^{\text {th }}$ perc.)

Warm Extremes
Summer days (tmax $>25^{\circ} \mathrm{C}$)
Tropical nights (+ min $>20^{\circ} \mathrm{C}$)
Monthly highest value in tmax
Monthly highest value in tmin
Warm nights (\% days w tmin $>90^{\text {th }}$ perc.)
Warm days (\% days w tmax $>90^{\text {th }}$ perc.)
Warm spell duration index (count of days w at least 6 cons. days w tmax $>90^{\text {th }}$ perc.)

Others
Growing season length (6 days with $T G>5^{\circ} \mathrm{C}$ \& 6 days with $T G<5^{\circ} \mathrm{C}$; North \& South Hemispheres)
Diurnal temperature range (monthly mean difference between tmax \& tmin

Example

TX90P Quebec2

Definition of precipitation indices

(11 indices)

Others
Simple Day Intensity Index (total prec divided by number of wet days)
Days w prec > Xx mm
Annual total precipitation

Extremes
Monthly highest 1-day prec
Monthly highest 5-day cons. prec
Heavy prec days (prec > 10 mm)
Very heavy prec days (prec > 20 mm)
Consecutive dry days (max number of cons. days w prec < 1 mm)
Consecutive wet days (max number of cons. days w prec $\geq 1 \mathrm{~mm}$)
Very wet days (annual total prec w prec > 95 ${ }^{\text {th }}$ perc.)
Extremely wet days (annual total prec w prec $>99^{\text {th }}$ perc.)

Example

R20mm Quebec2_DLY_adj

R2=2.1 p-value $=0.137$ Slope estimate $=0.022$ Slope error $=0.014$

