
Grounded by Gravity:

A Well-Behaved Trade Model with Industry-Level
Economies of Scale∗

Konstantin Kucheryavyy

U Tokyo

Gary Lyn

UMass Lowell

Andrés Rodrı́guez-Clare

UC Berkeley and NBER

February 10, 2017

Abstract

This paper presents a multi-industry trade model with industry-level econo-

mies of scale that nests a Ricardian model with Marshallian externalities as well as

multi-industry versions of Krugman (1980) and Melitz (2003). The behavior of the

model depends on two industry-level elasticities: the trade elasticity and the scale

elasticity. For the case of two countries, we show that the equilibrium is unique if

and only if the product of the trade and scale elasticities is weakly lower than one

in all industries. Extensive simulation analysis strongly suggests that this result ex-

tends to the case of more than two countries. If the condition for uniqueness is

satisfied, then all countries gain from trade, even when the scale elasticity varies

across industries. The presence of scale economies tends to lower the gains from

trade except if the country specializes in industries with relatively high scale elas-

ticities. On the other hand, scale economies amplify the gains from trade liberal-

ization except if it leads to specialization in industries with relatively low scale elas-

ticities. These and other results are explored at the quantitative level for different

values of the scale elasticity.
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1. Introduction

The field of international trade has made great strides in recent years by mapping the-

ory to data in the new quantitative trade models. This has led to important insights

into the consequences of globalization. But a fundamental issue has been missing from

these models: the role of localized and industry-specific external economies of scale.

These externalities played an important role in the world economy at the time of Mar-

shall (1890, 1930), and possibly play an even greater role in the global economy today.1

There is good reason for this omission. Early models yielded some discomforting re-

sults, including “a bewildering variety of [multiple] equilibria” (Krugman, 1995) so that

trade patterns need not conform to comparative advantage, along with the “paradoxi-

cal implication that trade motivated by the gains from concentrating production need

not benefit the participating countries” (Grossman and Rossi-Hansberg, 2010). At the

heart of these “pathologies” seemed to lay the compatibility assumption of increasing

returns and perfect competition (see Chipman, 1965), namely that firms take produc-

tivity as given even though productivity depends on total industry output. This leads to

a circularity whereby the scale of an industry affects its productivity, while an industry’s

productivity affects its scale through the impact on the pattern of comparative advan-

tage and specialization. In the standard analysis, this leads to multiple equilibria.2

Grossman and Rossi-Hansberg (2010, henceforth GRH) recently proposed a two-

country Ricardian model with national industry-level external economies of scale (or

Marshallian externalities), which attacks this compatibility assumption head-on. In-

stead of perfect competition, GRH assume Bertrand competition so that firms in each

industry understand the implications of their decisions on industry output and pro-

ductivity, ensuring that in equilibrium we have the “right” allocation of industries across

countries in a similar fashion to that of the constant returns to scale framework of

Dornbusch, Fischer and Samuelson (1977). While the framework successfully elimi-

nates the “pathologies” in a world free of trade costs, Lyn and Rodrı́guez-Clare (2013a,b)

illustrate circumstances under which multiple equilibria arise in the presence of trade

1See Krugman (2011) for a nice exposition of recent anecdotal evidence. For empirical evidence see,
for instance, Caballero and Lyons (1989, 1990, 1992), Chan, Chen and Cheung (1995), Segoura (1998),
Henriksen, Steen and Ulltveit-Moe (2001), Fazio and Maltese (2015), and Klein and Crafts (2015).

2See early work exploring this by Graham (1923), Ohlin (1933), Matthews (1949), Kemp (1964), Melvin
(1969), Markusen and Melvin (1981), and Ethier (1982a,b).
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costs. Coupled with the fact that the equilibrium has mixed strategies for some levels

of trade costs, the framework quickly becomes intractable, with little hope of extending

it to a multi-country setting with trade frictions.

In this paper we present a Ricardian model with Marshallian externalities that ad-

mits a unique equilibrium under intuitive parameter restrictions. Unlike GRH, we leave

the compatibility assumption intact and approach the problem from a different angle

by relaxing the implicit assumption in the standard framework (and in GRH) that firms

within each industry are producing a homogeneous good. In particular, we allow for

intra-industry heterogeneity as in Eaton and Kortum (2002, henceforth EK) and find

that this adds some “curvature” that helps in establishing uniqueness of equilibrium as

long as the strength of Marshallian externalities is not too high. The framework yields

the standard gravity-type equation and so provides a platform to assess quantitatively

the importance of these externalities for the welfare effects of trade.3

The system of equations that characterizes the equilibrium of the Ricardian multi-

industry model with Marshallian externalities turns out to be isomorphic to the equi-

librium system of a more general version of the multi-industry Krugman (1980) model

of product differentiation with internal economies of scale.4 The existence and unique-

ness result that we prove for our Ricardian setting can then be seamlessly applied to the

multi-industry Krugman model. As far as we know, we are the first to establish unique-

ness of equilibrium for this general case. Not surprisingly, the isomorphism extends

also to the multi-industry Melitz (2003) model if the productivity distribution is Pareto

as in Chaney (2008) and the fixed exporting costs are paid in units of labor of the desti-

nation country.

The common mathematical structure that characterizes the equilibrium in all these

multi-industry gravity models is governed by two elasticities that can vary across indus-

tries: the elasticity of bilateral trade flows to bilateral trade costs, commonly referred to

as the trade elasticity; and the elasticity of productivity with respect to industry size,

which we will refer to as the scale elasticity. The condition for uniqueness is that (in all

3Our analysis restricts to the case of Marshallian externalities, which operate inside each industry.
An alternative case is the one in which some of the externalities operate across industries. Yatsynovich
(2014) has recently shown conditions under which a model with such cross-industry externalities exhibits
a unique equilibrium for the case with frictionless trade.

4Abdel-Rahman and Fujita (1990), Allen et al. (2015) and Redding (2016) explore similar isomorphisms
for spatial equilibrium models in the economic geography literature.
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industries) the product of these two elasticities is not higher than one.5 If this condition

is violated, then there exist multiple equilibria, so the condition is both necessary and

sufficient.

In the Ricardian model the scale elasticity is given directly by the strength of Mar-

shallian externalities, so the condition for uniqueness is that the strength of these exter-

nalities is not higher than the inverse of the trade elasticity. In the Krugman or Melitz-

Pareto models the scale elasticity is given by the inverse of the trade elasticity, hence

we are always at the edge of the region of uniqueness. One can easily add flexibil-

ity to the Krugman and Melitz-Pareto models to break the tight link between the two

elasticities. For example, if we allow the elasticity of substitution across varieties from

different countries to differ from the elasticity of substitution across varieties from the

same country (with nested CES preferences) then the product of the scale and trade

elasticities can be different than one.

When formulating the equilibrium conditions in our model, we explicitly allow for

corner equilibria in which industries shut down in some countries. We show that if

the product of trade and scale elasticities is less than one then every country is ac-

tive in all industries, while if the product is one then the equilibrium may exhibit cor-

ners. In particular, as is known in the literature, the multi-industry Krugman model can

have countries completely specialized in some subset of industries as an equilibrium

outcome. Remarkably, however, the existing literature lacks a proof of uniqueness of

equilibria in the multi-industry Krugman model while appropriately dealing with the

complementary slackness conditions relevant for this case.

In this paper we show existence and uniqueness of equilibrium in a setting with

multiple industries and two countries while allowing for complete specialization and

for endogenous wages. Our existence result is valid for more than two countries, while

we have only been able to extend the uniqueness result to more than two countries un-

der frictionless trade or with exogenous wages. The theoretical difficulty lies in the fact

that, with trade frictions and more than two countries, the excess labor demand sys-

tem does not satisfy the gross substitutes property — a sufficient condition for unique

5Strictly speaking, uniqueness also requires that the matrix of bilateral trade freeness parameters be
invertible. This is a mild condition that is needed only when the product of the trade elasticity and the
scale elasticity is exactly one, and its violation leads to multiplicity in allocations but — as far as we know
— not in real wages.
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wages that is often satisfied in similar environments. We have explored alternative ap-

proaches to prove equilibrium uniqueness. One is the Index Theorem, which requires

showing that the determinant of the negative of the Jacobian of the excess labor de-

mand system is positive at any equilibrium wage vector (see Kehoe, 1980). Unfortu-

nately, signing this determinant is extremely difficult. Another approach is the one pro-

posed by Allen et al. (2014), but it turns out that their sufficient condition for unique-

ness is violated whenever our multi-sector gravity model exhibits economies of scale.

We have done extensive numerical simulations to see whether there are cases in

which multiplicity of equilibria emerge in economies where the product of the trade

and scale elasticities is weakly lower than one in all sectors. We checked more than

1.5 million random parameterizations of our economy with three or four countries and

two sectors and did not find any examples of multiplicity. We have also developed an

algorithm based on interval arithmetic methods that finds all equilibria for our econ-

omy. As this algorithm is much slower, we have only been able to run it for about 2.3

thousand economies, again finding a unique equilibrium in all cases.

In the second half of the paper we use our unified framework to study the impli-

cations of scale economies for the welfare effects of trade. We first establish that all

countries gain from trade as long as the product of the trade and scale elasticities is

weakly lower than one in all industries. This is so even if the scale elasticity differs

across industries — for example, because of cross-industry variation in the strength of

Marshallian externalities in the Ricardian model. This is an important finding in light

of previous results with this type of model where countries could lose from trade.

We extend the “sufficient statistics approach” to the quantification of the gains from

trade in Arkolakis, Costinot and Rodrı́guez-Clare (2012) to multi-industry models with

scale economies. The isomorphism across models still applies in this setting in the

sense that, for the same industry-level trade and scale elasticities, the different models

we consider deliver the same gains from trade and the same counterfactual implica-

tions given industry-level data.6 Given trade and scale elasticities, we now have a gen-

eral formula for the gains from trade in terms of industry-level trade, expenditure and

revenue shares. This formula can be used to explore the way in which scale economies

6As in Arkolakis et al. (2012), the gains from trade are defined as the negative of the welfare change
caused by a move back to autarky.
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affect the gains from trade.

For the simple case in which the scale elasticity is the same across industries, we

show that the gains from trade are lower with scale economies than without. This result

may seem counterintuitive, but the reader should keep in mind that the gains from

trade are defined as conditional on trade shares, so that we can compare the gains from

trade implied by different models that are consistent with the same data (Costinot and

Rodrı́guez-Clare, 2014). Thus, the intuition that scale economies should lead to larger

gains from trade through deeper industry-level specialization and larger trade flows is

simply not operative here, although as we explain below this intuition is relevant for

the gains from trade liberalization.

So why do scale economies lead to lower gains from trade? The move back to au-

tarky implies a reallocation of labor across industries that, in the presence of scale eco-

nomies, leads to productivity gains in expanding industries and productivity losses in

contracting industries. Since the industries that expand are those where the country

has positive net imports, it must be that they have a high expenditure share or a low

employment share. A higher expenditure share implies that a given productivity gain

matters more for welfare, whereas a low employment share implies that a given ab-

solute increase in employment leads to a higher proportional expansion and a higher

productivity gain. As a result, a move back to autarky generates a positive expenditure-

weighted average productivity change, and this implies lower welfare losses. A corollary

of this reasoning is that the decline in the gains from trade from the presence of eco-

nomies of scale is stronger for economies that exhibit a higher degree of industry-level

specialization.

The previous results are specific to the case in which the scale elasticity is the same

across industries. If the scale elasticity varies across industries, the implication of eco-

nomies of scale depends not only on the degree of industry-level specialization, but also

on its pattern. Everything else equal, countries that happen to specialize in industries

with high scale elasticities will gain more than countries that specialize in sectors with

low scale elasticities. Countries that specialize in industries with high scale elasticities

may even gain more from trade in the presence of economies of scale compared to the

standard model without them.

Computing the gains from trade is made easy by the fact that one can write closed-
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form solutions for labor allocations in the autarky counterfactual equilibrium. In con-

trast, computing the gains from trade liberalization (i.e., the welfare effect from a de-

cline in trade costs) generally requires solving the model numerically to characterize

changes in industry-level trade and revenue shares. We consider two simple cases for

which we can do so analytically: first, a case of two mirror-image countries, and, sec-

ond, a case with exogenous wages. In the first case we find that the gains from trade

liberalization are higher with scale economies than without, a reflection of the mag-

nified response of industry-level specialization and trade to the decline in trade costs

in the presence of economies of scale. In the second case we find that countries lose

from unilateral trade liberalization and from a foreign technological improvement if

the product of the trade and scale elasticities is above a threshold value that is a func-

tion of industry-level import and export shares. We think of this as a generalization of

the results in Venables (1987), which were specific to the Krugman (1980) model.

We complement our exploration of the effect of scale economies on the gains from

trade and the gains from trade liberalization by applying our framework to data on 31

industries from the World Input Output Database (WIOD, Timmer et al., 2015) in 2008.

We start by focusing on the case with common trade and scale elasticities across indus-

tries. As explained above, the presence of scale economies leads to a decline in the gains

from trade, and this decline is more pronounced in countries that have a higher degree

of specialization across industries. Thus, for example, for the country with the high-

est degree of industry specialization, Korea, the gains from trade decrease from 6.6%

to 4.1%, while they barely decrease for the country with the lowest degree of industry

specialization, Brazil.

We then study how the gains from trade are affected by scale economies when the

scale elasticity varies across industries. We consider two possibilities. The first is that

scale economies are present only in manufacturing industries — a typical case consid-

ered in the literature (see, for instance, Ethier, 1982a,b). Relative to the case with no

scale economies, gains from trade increase for countries that specialize in manufactur-

ing and the opposite happens for countries that specialize away from manufacturing.

For example, gains from trade increase from 3 to 3.5% for China, while they decrease

from 5.7 to 3.5% for Greece. The second possibility we consider is that scale elasticities

are inversely proportional to trade elasticities (as in the standard multi-industry Krug-
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man or Melitz-Pareto models), with trade elasticities varying across industries and cal-

ibrated to those estimated by Caliendo and Parro (2015).7 In this case, countries that

happen to specialize in industries with high trade elasticities (and hence lower implied

scale elasticities) experience bigger declines in gains from trade, while the opposite

happens for countries specializing in industries with low trade elasticities. The effects

are sizable — for example, moving from a model without to a model with scale eco-

nomies leads to a decline in the gains from trade in Greece from 14.5 to 5.5% but an

increase in the gains from trade in Japan from 2.4 to 6.1%.

We next use the model to quantify the welfare implications of unilateral trade lib-

eralization and foreign productivity gains in an environment with economies of scale,

comparing the results to those in an environment without economies of scale. To link

this exercise to the theoretical analysis inspired by Venables (1987), we assume again

that the manufacturing sector exhibits scale economies while all other sectors do not.

We find that gains from unilateral trade liberalization in manufacturing decrease as we

allow for scale economies in that sector, but the gains are always positive. We show

that this arises because of wage adjustments that are ruled out in the Venables-type

analysis. On the other hand, we find that most countries experience losses from an

improvement in Chinese manufacturing productivity.

Our final quantitative exercise is to explore the role of economies of scale in ex-

plaining trade flows and industry-level specialization in the data. We find that if scale

economies are as strong as those in the Krugman model then most of the industry-level

specialization that we see in the data is due to economies of scale rather than pure Ri-

cardian comparative advantage.

There are two papers that study the question of uniqueness of equilibrium in the

multi-industry Krugman model: Hanson and Xiang (2004) consider the case of two

countries and a continuum of industries while Behrens et al. (2009) consider the case

of many countries and one industry with exogenous wages. They both show unique-

ness under the assumption that there are no corner allocations. We extend their result

to a more general environment, emphasize the key condition that the product of the

trade and scale elasticities is weakly lower than one in all industries, allow for corner

7This corresponds to the case considered by Costinot and Rodrı́guez-Clare (2014), see column 3 in their
Table 4.1.
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allocations, and provide extensive simulation analysis that strongly suggests that the

uniqueness result extends to the case with more than two countries.

Our welfare analysis is related to that in Costinot and Rodrı́guez-Clare (2014), who

compute gains from trade and gains from trade liberalization for multi-industry eco-

nomies under perfect and monopolistic competition. Compared to that paper, we fur-

ther establish analytically that all countries gain from trade as long as the product of

the trade and scale elasticities is weakly lower than one in all industries, we connect

a country’s decline in the gains from trade to its degree of industry specialization, we

analyze how varying scale elasticities across industries interact with a country’s inter-

industry trade pattern to affect its gains from trade, and we connect the results for the

gains from trade liberalization to the insights in Venables (1987).

Finally, our paper is also related to Somale (2014), who introduces sector-specific

innovation into a multi-sector Eaton and Kortum (2002) model (via mechanisms from

Eaton and Kortum, 2001) to quantify its implications for welfare. Interestingly, although

the model in Somale (2014) is dynamic, the balanced growth path is also characterized

by the same system of equations as all the models that we consider in this paper, and so

our results extend to this case as well. Somale (2014) also studies the quantitative im-

portance of scale economies in determining industry-level specialization, but whereas

he focuses on the variance of comparative advantage, we compare direct measures of

trade and specialization between the data and those that would arise in a counterfac-

tual world where everything is the same except that there are no economies of scale.

2. A Multi-Industry Gravity Model with Scale Economies

We first present the key equilibrium equations of the model and then discuss how these

equations arise in three different settings: (i) our multi-industry Ricardian model with

Marshallian externalities; (ii) the multi-industry Krugman (1980) model with possi-

bly different elasticities of substitution between varieties from the same and different

countries; and (iii) the multi-industry Melitz (2003) model with Pareto-distributed pro-

ductivity as in Chaney (2008) and also allowing for different elasticities of substitution

between varieties from the same and different countries.

There are N countries indexed by n, i and l, and K industries or sectors indexed
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by k. The only factor of production is labor, which is immobile across countries and

perfectly mobile across industries within a country. We use L̄i and wi to denote the

inelastic labor supply and the wage level in country i, respectively. Each country has

a representative consumer with upper-tier Cobb-Douglas preferences with industry-

level expenditure shares βi,k ∈ (0, 1) for all (i, k) with
∑K

k=1 βi,k = 1 for all i. Trade costs

are of the standard iceberg type, so that delivering a unit of any industry-k-good from

country i to country n requires shipping τni,k ≥ 1 units of the good, with τii,k = 1 for all

i and all k and τnl,k ≤ τni,kτil,k for all n, l, i and k.

Let Xn,k denote country-n’s total expenditure on industry k and let λni,k denote the

share of this expenditure devoted to imports from country i. Balanced trade implies

Xn,k = βn,kwnL̄n.

We focus on models that generate industry-level economies of scale and a log-linear

gravity equation for industry-level trade shares. Below we show that our Ricardian

model with industry-level external economies of scale as well as Krugman (1980) and

Melitz (2003) satisfy this criteria. Economies of scale are captured by an industry-level

productivity shifter that can vary with total industry employment according to S̃i,kL
ψk
i,k ,

where S̃i,k is a constant, Li,k denotes total employment in industry (i, k), and ψk is

the scale elasticity in industry k, which is assumed to be common across countries.

Industry-level trade shares are given by

λni,k =

(
wiτni,k/S̃i,kL

ψk
i,k

)−εk
∑

l

(
wlτnl,k/S̃l,kL

ψk
l,k

)−εk ,
where εk is the trade elasticity in industry k, defined formally by εk ≡ −

∂ ln(λni,k/λnn,k)
∂ ln τni,k

.

Letting αk ≡ εkψk and Si,k ≡ S̃εki,k, we rewrite trade shares more conveniently as

λni,k(w,Lk) =
Si,kL

αk
i,k (wiτni,k)

−εk∑
l Sl,kL

αk
l,k (wlτnl,k)

−εk , (1)

where w ≡ (w1, ..., wN ) is the vector of wages and Lk ≡ (L1,k, . . . , LN,k) is the vector of

labor allocations to industry k across all countries. In turn, the price index for industry



GROUNDED BY GRAVITY 11

k in country n is

Pn,k = µn,k

(∑
l

Sl,kL
αk
l,k (wlτnl,k)

−εk
)−1/εk

, (2)

and the aggregate price index is Pn = β̃n
∏K
k=1 P

βn,k
n,k , where µn,k and β̃n are some con-

stants.8

We now introduce industry and labor market clearing conditions. In contrast to

multi-industry gravity models without scale economies (e.g., Donaldson (2016), Costinot

et al. (2012)), here we can have equilibria with corner allocations (i.e., Li,k = 0 for some

k and for some, but not all, i), so we need to be careful when formulating the market

clearing conditions. With this in mind, we specify the market clearing condition for any

industry (i, k) as a set of complementary slackness conditions,

Li,k ≥ 0, Gi,k (w,Lk) ≥ 0, Li,kGi,k (w,Lk) = 0, (3)

where

Gi,k (w,Lk) ≡ wi −
1

Li,k

∑
n

λni,k(w,Lk)βn,kwnL̄n (4)

is the excess of the wage over revenue per worker in industry (i, k). Note that for positive

labor allocations equation (3) implies Gi,k (w,Lk) = 0, which can be reformulated as

wiLi,k =
∑

n λni,kβn,kwnL̄n, a standard industry clearing condition.9

Finally, the labor-market clearing condition for any country i is simply

∑
k

Li,k = L̄i. (5)

Denote by L ≡ (L1, . . . ,Lk) the vector of labor allocations across industries. The

equilibrium of the economy is a wage vector and labor allocation (w,L) ∈ RN++ ×

8The constant µn,k will be specified below for each model, while β̃n is the standard Cobb-Douglas term

β̃n ≡
∏
k β
−βn,k

n,k .
9A subtle issue arises here with the evaluation of Gi,k (w,Lk) and Li,kGi,k (w,Lk) at points with

Li,k = 0. If we think of the codomain of these functions as the set of real numbers then Lk with Li,k = 0
(for at least some, but not all i) is not in their domain. To avoid this, we define the codomain as the ex-
tended real number line R ∪ {−∞,+∞} and we define Gi,k (w,Lk) and Li,kGi,k (w,Lk) for Li,k = 0 by

limx→Lk

[
wi −

1

xi

∑
n λni,k(w,x)βn,kwnL̄n

]
and limx→Lk xi

[
wi −

1

xi

∑
n λni,k(w,x)βn,kwnL̄n

]
, respec-

tively. (Of course, for any point with Li,k > 0 these alternative definitions are perfectly consistent with the
ones in the text.) For each k, we still leave the point Lk with Li,k = 0 for all i outside the domain. The
formal definitions are in Appendix A.
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(
RNK+ \ ZNK0

)
such that (3) holds for all (i, k) and (5) holds for all i, where

ZNK0 ≡
{

(x1, . . . ,xK) ∈ RNK+ : xk = 0 for some k
}

is the set of labor allocations with zero total labor (across countries) devoted to some

industries.

2.1. A Ricardian Model with Marshallian Externalities

We now show how the multi-industry Eaton and Kortum (2002, henceforth EK) model

as developed by Costinot, Donaldson and Komunjer (2012, henceforth CDK), but ex-

tended to allow for Marshallian externalities leads to the equilibrium conditions pre-

sented above.

Each industry is composed of a continuum of goods ω ∈ [0, 1]. Preferences are

Cobb-Douglas across industries with weights βi,k, and CES across goods within each

industry k with elasticity of substitution σk.

The production technology exhibits constant or increasing returns to scale due to

national external economies of scale at the industry level (i.e., Marshallian externali-

ties). In particular, labor productivity for good ω in industry (i, k) is zi,k(ω)Lφki,k, where

zi,k(ω) is an exogenous productivity parameter, Li,k is the total labor allocated to in-

dustry (i, k), and φk is the industry specific parameter that governs the strength of Mar-

shallian externalities. We model zi,k(ω) as in EK: zi,k(ω) is independently drawn from a

Fréchet distribution with shape parameter θk and scale parameter Ti,k, and we assume

that θk > σk − 1.

There is perfect competition, and the positive effect of industry size on productiv-

ity, Lφki,k, is external to the firm. Thus, firms take as given both prices and unit costs,

which are given by cni,k (ω) =
τni,kwi

zi,k(ω)L
φk
i,k

. This implies that pni,k (ω) = cni,k (ω). Since

consumers can shop for the best deal around the world, prices must satisfy pn,k (ω) =

min1≤i≤N {pni,k (ω)}. Following the same procedure as in EK, trade shares can be shown

to satisfy

λni,k =
Ti,kL

θkφk
i,k (wiτni,k)

−θk∑
l Tl,kL

θkφk
l,k (wlτnl,k)

−θk
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with price indices given by

Pn,k = µRick

(∑
l

Tl,kL
θkφk
l,k (wlτnl,k)

−θk
)−1/θk

,

where µRick ≡ Γ
(

1−σk+θk
θk

) 1
1−σk , with Γ being the Gamma function which typically arises

in this Ricardian setting. These two equations collapse to the expressions for trade

shares and industry price indexes in equations (1) and (2) by setting with Si,k = Ti,k,

εk = θk, ψk = φk and µn,k = µRick . See the first row of Table 1.

Finally, the equilibrium condition (3) can be seen as capturing the standard com-

plementary slackness condition in the Ricardian model requiring the price to be weakly

lower than the unit cost, with equality if there is positive production in the industry.

Multiplying both the price and the unit cost by labor productivity (adjusted by trade

costs), this is the same as requiring that revenue per worker be weakly lower than the

wage, with equality if there is positive employment in the industry.

Table 1: Mapping to Different Models

Model Trade elasticity, εk Scale elasticity, ψk αk

CDK with ME θk φk θkφk

Multi-Sector Krugman σk − 1 1
σk−1 1

Multi-Sector Melitz-
Pareto Model

θk
1
θk

1

Generalized Multi-Sector
Krugman

ηk − 1 1
σk−1

ηk−1
σk−1

Generalized Multi-Sector
Melitz-Pareto

θk

1+θk

(
1

ηk−1
− 1
σk−1

) 1
θk

1

1+θk

(
1

ηk−1
− 1
σk−1

)

2.2. A Krugman Model with Two-Tier CES preferences

Here we present a multi-industry Krugman model with an added layer of product dif-

ferentiation so that the elasticity of substitution across varieties from different coun-

tries is allowed to differ from the elasticity of substitution across varieties from the

same country (with nested CES preferences). We again show that this model leads to
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the equilibrium conditions in equations (3) and (5).

There is a continuum of differentiated varieties within each industry. Preferences

are multi-tiered: Cobb-Douglas across industries with weights βi,k, CES across country

bundles within an industry with elasticity ηk, and CES across varieties within a country

bundle with elasticity of substitution σk > 1.

LetAi,k be the exogenous productivity in (i, k) which is common across firms in that

industry, letFi,k denote the fixed cost (in terms of labor) associated with the production

of any variety in (i, k), and let Mi,k the measure of goods produced in (i, k). There is

monopolistic competition and trade shares are λni,k = (Pni,k/Pn,k)
1−ηk , where Pni,k =

M
1/(1−σk)
i,k (σ̄kwiτni/Ai,k) is the price index in country n of country i varieties of industry

k, σ̄k ≡ σk/ (σk − 1) is the mark-up, and Pn,k =
(∑

i P
1−ηk
ni,k

)1/(1−ηk)
.

We now solve for equilibrium variety Mi,k as a function of industry employment

Li,k and then use the result to derive an expression for trade shares for this model. Vari-

able profits in (i, k) are simply total industry revenues divided by σk. Letting Πi,k be

total profits net of fixed costs in industry (i, k), we then have Πi,k =
∑

n λni,kXn,k/σk −

wiMi,kFi,k. If Li,k > 0 then free entry implies zero profits so total revenues must equal

total wage payments in industry (i, k),
∑

n λni,kXn,k = wiLi,k. Combined with Πi,k = 0

we then have Mi,k = Li,k/σkFi,k. Trade shares are then

λni,k =
Aηk−1
i,k F

− ηk−1

σk−1

i,k L
ηk−1

σk−1

i,k (wiτni,k)
−(ηk−1)

∑
lA

ηk−1
l,k F

− ηk−1

σk−1

l,k L
ηk−1

σk−1

l,k (wlτnl,k)
−(ηk−1)

with price indices given by

Pn,k = µKrugk

(∑
l

Aηk−1
l,k F

− ηk−1

σk−1

l,k L
ηk−1

σk−1

l,k (wlτnl,k)
−(ηk−1)

)−1/(ηk−1)

,

where µKrugk = σ
1

σk−1

k σ̄k. These two equations collapse to the expressions for trade

shares and industry price indexes in equations (1) and (2) by settingSi,k = Aηk−1
i,k F

− ηk−1

σk−1

i,k ,

ψk = (σk − 1)−1, εk = (ηk − 1) and µn,k = µKrugk . Note also that if we set σk = ηk for all

k then this is just the standard multi-industry Krugman model, while if σk → ∞, then

(ηk − 1)/(σk − 1) → 0 and we obtain the multi-industry Armington model. See rows 2
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and 4 of Table 1.10

To deal with the possibility of corner labor allocations under monopolistic compe-

tition, we require that profits per firm in industry (i, k) be weakly lower than zero, with

strict equality if Li,k > 0, exactly as captured by the complementary slackness condi-

tions in (3).

2.3. A Melitz-Pareto Model with Two-Tier Preferences

We now briefly present a model à la Melitz (2003) with Pareto distributed productivity

and the same preferences as in the Krugman model above and show that it leads to the

same equilibrium conditions (3) and (5).11

After paying a fixed “entry” cost Fi,k in units of labor in country i, firms are able to

produce a variety in industry (i, k) with labor productivity drawn from a Pareto distri-

bution with shape parameter θk > σk − 1 and location parameter bi,k. Firms from i can

then pay a fixed “marketing” cost fn,k in units of labor of n to serve that market.12,13 In

Appendix B we show that this leads to trade shares

λni,k =
bθkξki,k F−ξki,k Lξki,k (wiτni,k)

−θkξk∑
l b
θkξk
l,k F−ξkl,k Lξkl,k (wlτnl,k)

−θkξk

and price indices

Pn,k = µMel
n,k

(∑
l

bθkξkl,k F−ξkl,k Lξkl,k (wlτnl,k)
−θkξk

)−1/θkξk

where ξk ≡ 1

1+θk

(
1

ηk−1
− 1
σk−1

) , µMel
n,k ≡ µ̄Mel

k

(
fn,k

βn,kLn

)( 1
σk−1

− 1
θk

)
and µ̄Mel

k is some con-

10Is straightforward to incorporate Marshallian externalities into the multi-industry Krugman model
presented above. For instance, letting Ai,k ≡ Ãi,kL

φk
i,k yields a setting with scale and trade elasticities

ψk = (σk − 1)−1 + φk and εk = ηk − 1, respectively.
11Feenstra et al. (2014) also consider a multi-industry Melitz-Pareto model with possibly different elas-

ticities of substitution across varieties from different countries and across varieties from the same country.
12To simplify the analysis, we assume that the fixed marketing cost to serve destination n does not vary

across origins i. Allowing these fixed costs to vary across country pairs would imply that instead of a term
Si,k we would have a term Sni,k that varies across country pairs, but this would not change any of our
main conclusions below.

13The assumption that fixed marketing costs are paid in units of labor of the destination country is
critical for the result that this model collapses to the general structure introduced above. This is related
to the discussion in ACR about how their macro-level restriction R3’ obtains in the Melitz-Pareto model if
and only if the fixed cost is paid in units of labor of the destination country.
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stant defined in Appendix B. These two equations collapse to the expressions for trade

shares and industry price indexes in equations (1) and (2), respectively, by setting Si,k =

bθkξki,k F−ξki,k , ψk = 1/θk, εk = θkξk and µn,k = µMel
n,k . Note also that if we set σk = ηk for all k

then ξk = 1 and this model is just a multi-industry version of the Melitz-Pareto model

in Arkolakis et al. (2008). See rows 3 and 5 in Table 1.

3. Characterizing Equilibrium

To characterize the equilibrium we proceed in two steps: we first characterize the equi-

librium labor allocations given wages, and then we characterize wages that satisfy labor

market clearing given the corresponding equilibrium labor allocations.

Two-Step Equilibrium Definition. The equilibrium labor allocations for some wage

vector w ∈ RN++ are given by L ∈ RNK+ \ ZNK0 that satisfy (3) for all (i, k). Let L(w) be

the set of such equilibrium allocations. A wage vector w ∈ RN++ is an equilibrium wage

vector if there exists an element L ∈ L(w) such that L also satisfies (5) for all i.

Note that given wages, for each industry k we have a system ofN nonlinear comple-

mentary slackness conditions in Li,k for i = 1, ..., N specified by (3). For the first step

we exploit the fact that this system is independent across k. We now introduce some

additional notation and definitions.

Interior, Corner and Complete Specialization Allocations. An allocation Lk is an

interior allocation if Li,k > 0 for all i; an allocation Lk is a corner allocation if Li,k = 0

for at least one i; and an allocation Lk is a complete specialization allocation if there is

a unique i∗(k) such that Li,k = 0 for all i 6= i∗(k).14

Industry-Level Equilibrium Labor Allocations. Given wage w, Lk(w) denotes the

set of equilibrium labor allocations in industry k, i.e., for any Lk ∈ Lk(w) , Lk satisfies

complementary slackness conditions (3) for industry k.

14Note that there are many complete specialization allocations. For instance, it could be the case that
production in industry 1 is concentrated solely in country 1 (i∗(1) = 1) or in country 2 (i∗(1) = 2), and so
on.
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3.1. Step 1: Equilibrium Labor Allocations

Before we proceed, let us introduce an additional assumption on the matrix of trade

costs which we employ to prove our results in the case of αk = 1 for some k:

Assumption 1. Matrix 
τ−εk11,k . . . τ−εk1N,k

...
...

τ−εkN1,k . . . τ−εkNN,k


is non-singular.

We discuss the role of this assumption as well as sufficient conditions which guaran-

tee it below. For now, note that this assumption is violated if trade is free (i.e., τni,k = 1

for all n and i).

Given the previous definitions, we are now ready to state our first Proposition.

Proposition 1. If either (a) 0 ≤ αk < 1, or (b) αk = 1 and Assumption 1 holds, then

the set Lk(w) is a singleton; if αk > 1, then the set Lk(w) contains multiple allocations,

including (but not necessarily limited to) one for each complete specialization allocation.

Moreover, the unique allocation in Lk(w) is an interior allocation if 0 ≤ αk < 1, while it

may be an interior or a corner allocation if αk = 1.

This proposition states conditions under which, given any vector of positive wages

and any industry k, the system (3) of N non-linear complementary slackness condi-

tions in Li,k for i = 1, ..., N has a unique solution, with Li,k > 0 for all i if 0 ≤ αk < 1.

The case with αk = 0 is trivial: given wages, labor allocations are explicitly obtained

from the conditions Li,kGi,k(w,Lk) = 0. Below we focus on the case with αk > 0.

Before proving the proposition, we simplify notation by suppressing the sub-index

k and letting ani ≡ Si (wiτni)
−εw−αi and bn ≡ βnwnL̄n. Combining equations (1) and (4)

we then have
Gi (w,L)

wi
= 1− 1

wiLi

∑
n

ani(wiLi)
α∑

l anl(wlLl)
α
bn.

Transforming variables with xi ≡ wiLi, letting x ≡ (x1, ..., xN ), and with a slight abuse
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of notation, we can write

Gi (x) = 1−
∑
n

anix
α−1
i∑

l anlx
α
l

bn.
15

The system in (3) can now be written as a non-linear complementarity problem (NCP)

in x:

xi ≥ 0, Gi(x) ≥ 0, xiGi(x) = 0, i = 1, . . . , N. (6)

Note that if x solves (6) then
∑

i xiGi(x) = 0 and hence
∑

i xi =
∑

i bi. This implies that

the solution to (6) satisfies x ∈ Γ ≡
{
x ∈ RN |xi ≥ 0, i = 1, . . . , N ;

∑
i xi =

∑
i bi
}

.

To prove Proposition 1 we follow a popular approach in the economics literature

that consists of characterizing equilibria of general equilibrium models as solutions to

optimization problems.16 Doing this is possible if, for example, the function G(x) ≡

(G1(x), . . . , GN (x)) has a Jacobian that is symmetric at all points in its domain, since in

this case the function G is the gradient of some other function F that we can use in the

optimization problem.17 Fortunately, our function G satisfies this symmetry condition.

In fact, it is easy to see that G is the gradient of function F : RN+ \ {0} → R defined by

F (x) ≡ α
∑
n

xn −
∑
n

bn ln

(∑
i

anix
α
i

)
. (7)

As we establish formally below, this makes it possible to solve the NCP in (6) by way of

solving arg minx∈Γ F (x), where Γ is the compact set defined above.18

We now focus on the characterization of the optimization problem arg minx∈Γ F (x)

and then establish formally the connection between this problem and the NCP in (6).

Existence of a solution to arg minx∈Γ F (x) follows immediately from the fact that

Γ is a compact set and F (·) is continuous on Γ. To establish uniqueness, we show in

15Analogously to our treatment of the original functions Gi,k(w,Lk) and Li,kGi(wLk) at Li,k = 0 (see
footnote 9), we define values of Gi(x) and xiGi(x) at xi = 0 by their limits.

16Negishi (1960) is probably the most well-known example of this approach in which market equilibria
are characterized as solutions to a social planner’s problem. Kehoe, Levine and Romer (1992) describe
a more general framework in which the optimization problem does not necessarily have an economic
interpretation. Our case fits into their general framework.

17A classical result in mathematics states that a vector function is a gradient map if and only if its Jaco-
bian is symmetric in the domain of the function (see, for example, Theorem 4.1.16 on page 95 in Ortega
and Rheinboldt, 2000).

18We thank Anca Ciurte and Ioan Rasa for pointing us in this direction.
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Appendix C that under the conditions of Proposition 1 function F (·) is strictly convex

on Γ. Thus, since Γ is a convex set, F (·) has at most one global minimum on Γ. This

establishes the following result:

Lemma 1. If either (a) 0 < α < 1, or (b) α = 1 and Assumption 1 holds, then F (·) has a

unique global minimum on Γ.

Let us denote the unique global minimum of F (·) on Γ by x∗. In Appendix C we

prove the following result:

Lemma 2. If 0 < α < 1 then x∗i > 0 for all i = 1, . . . , N .

Finally, we prove the part of Proposition 1 concerning the case of α ≤ 1 by combin-

ing the two previous lemmas with the following equivalence result:

Lemma 3. If 0 < α ≤ 1, then x is a global minimum of F (·) on Γ if and only if x is a

solution to (6).

The proof of this lemma is almost trivial, because the conditions in (6) are just the

first-order conditions for the minimization of F (·) on Γ. The only complication is that

to invoke the first-order conditions, we need to have differentiability of F (·) on Γ which

is understood as differentiability of F (·) on some open set containing Γ. In case of

α < 1 any such open set necessarily includes points x with xi ≤ 0, at which F (·) is not

differentiable. We deal formally with this complication in Appendix C.

One might wonder if the equilibrium labor allocation is continuous in α as we ap-

proach α = 1 from below. Economically speaking, one would expect this to be the case,

so that if at α = 1 we have a corner allocation with xi = 0 for some country i then

xi(α) > 0 for all α < 1 but limα↑1 xi(α) → 0. Mathematically, however, this result is not

trivial because the function G is not jointly continuous in x and α for α = 1 and points

x with xi = 0 for some i. Still, thanks to the optimization approach followed in the

previous lemmas, we can establish the left continuity of x(α) by invoking the Theorem

of the Maximum (see Theorem 3.6 in Stokey, Lucas and Prescott, 1989) (see Appendix C

for details).

Lemma 4. If Assumption 1 holds, then x(α) is continuous as a function of α for all α ∈

(0, 1]. In particular, limα↑1 x(α) = x(1).
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Consider now the case with α > 1. We can easily show that there are many solutions

to (6). To see this, choose some i∗ and set xi∗ =
∑

n bn and xi = 0 for i 6= i∗. It is easy

to check that this satisfies Gi∗(x) = 0 and Gi(x) = 1 ≥ 0 for all i 6= i∗, so that all

conditions in (6) are satisfied. Of course, this is only one example and there are many

other possible equilibrium allocations for this case.

We finish this subsection by commenting on the role of Assumption 1 in Propo-

sition 1 as well as on sufficient conditions under which it holds. While Assumption 1

plays no role in the proof of uniqueness when αk < 1, we cannot rule out multiplicity of

equilibria if it is violated when αk = 1. As mentioned above, this assumption is violated

if trade is frictionless. In fact, it is violated if there is at least one pair of countries with

frictionless trade (in both directions) between them. Suppose, for instance, that there

were no trade costs between two countries i and j. The triangular inequality implies the

trade costs between i and j and all other countries are the same (i.e., τni,k = τnj,k and

τin,k = τjn,k for all n 6= i, j). It then follows that the i and j row in the matrix of Assump-

tion 1 are the same, so the non-singularity requirement is violated. Notice, however,

that the multiplicity that arises in this case is that at most the overall labor allocation

Li,k + Lj,k is determined, but not Li,k or Lj,k. This type of non-uniqueness is similar to

the one that can arise in Ricardian models under frictionless trade and is irrelevant for

welfare: real wages are the same across any two equilibria in this set. Moreover, with

any small trade costs between i and j the non-uniqueness disappears, rendering these

cases non-generic.

While it is easy to check if Assumption 1 is satisfied for a particular parametrization,

we can say a little bit more about the conditions which guarantee that this assumption

holds. Behrens, Lamorgese, Ottaviano and Tabuchi (2004) invoke classical results by

Schoenberg (1938) to show that, if trade costs τni correspond to the Euclidean distance

between countries n and i, then the matrix in Assumption 1 is positive definite (and,

hence, non-singular) as long as all countries are at distinct locations. In fact, any three

distinct numbers that satisfy the triangle inequality can be mapped to lengths of sides

of a triangle in R2, which means that any such numbers correspond to Euclidean dis-

tances between vertices of a triangle in R2. Together with the results from Schoenberg

(1938), this observation implies that for N = 3 the matrix in Assumption 1 is posi-

tive definite if (i) the iceberg trade costs are symmetric, (ii) greater than 1 for different
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countries, and (iii) satisfy the triangle inequality. For N > 3, conditions (i)-(iii) do not

generally imply that the iceberg trade costs correspond to distances in an Euclidean

space. Still, extensive simulations for trade-freeness matrices for N = 4, 5, 6 lead us to

conjecture that conditions (i)-(iii) guarantee that the matrix in Assumption 1 is positive

definite. Moreover, we conjecture that we can even dispense with the symmetry condi-

tion (i) — in this case it is the sum of the matrix in Assumption 1 with its transpose that

is positive definite.

3.2. Step 2: Equilibrium Wages

In the cases with 0 ≤ αk < 1 or with αk = 1 and Assumption 1 satisfied, Proposition 1

implies that the solution of the system of complementary slackness conditions (3) de-

termines a function from wages to labor allocations, Lk(w), for w ∈ RN++. When we

prove uniqueness of equilibrium below, we work with this function. Assumption 1 is a

regularity assumption that helps us establish uniqueness in the case of αk = 1, but its

violation does not affect existence of equilibrium. In fact, it is possible to show equi-

librium existence for any set of non-negative αk. In doing so we will make use of the

following two lemmas:

Lemma 5. If either (a) 0 ≤ αk < 1, or (b) αk = 1 and Assumption 1 holds, then the

function Lk(w) is continuous for all w ∈ RN++.

Lemma 6. If αk = 1, then the solution to (3) determines a non-empty convex-valued

upper hemi-continuous correspondence Lk (w) for all w ∈ RN++.

We prove both of these lemmas simultaneously in Appendix C by exploiting the

equivalence between the system in (3) and a constrained optimization problem and

invoking the Theorem of the Maximum from Stokey, Lucas and Prescott (1989). The

Theorem of the Maximum implies that the mapping from wages to equilibrium labor

allocations is upper hemi-continuous. Under the assumptions invoked in Lemma 5

this implies continuity, because under these assumptions the mapping from wages to

equilibrium labor allocations, Lk(w), is a function.

We now state our result for existence of equilibrium.

Proposition 2. If αk ≥ 0 for all k, then an equilibrium exists.
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Next, we turn to the question of uniquenes of equilibrium. We state our key results

in the following three propositions.

Proposition 3. If there is an industry k with αk > 1, then there are multiple equilibria.

Proposition 4. Assume that N = 2 and that for all k either (a) 0 ≤ αk < 1, or (b) αk = 1

and Assumption 1 holds. Then there is a unique equilibrium.

Proposition 5. Assume that 0 ≤ αk < 1 for all k and trade is frictionless in all industries,

i.e., that τni,k = 1 for all n, i, and k. Then there is a unique equilibrium.

Proposition 3 is proven by showing that there exists an equilibrium wage vector for

different complete specialization allocations for industries with αk > 1. Propositions 4

and 5 are proven by showing that the labor excess demand function satisfies the gross

substitutes property under the assumptions of these propositions. Uniqueness then

follows from Proposition 17.F.3 from MWG.

To discuss the challenge in extending the uniqueness result beyond those in Propo-

sitions 4 and 5, let us now focus on the case in which for all k either 0 ≤ αk < 1 or

αk = 1 and Assumption 1 holds. LettingZi(w) ≡
∑

k Li,k(w)−L̄i be the excess labor de-

mand in country i defined for all w ∈ RN++, and letting Z(w) ≡ (Z1(w), ..., ZN (w)), the

labor-market clearing conditions for all countries can be written simply as Z(w) = 0.

Propositions 1, 2, 4 and 5 establish that if there are two countries, or if there are many

countries but no trade costs, or if there are many countries and positive trade costs but

wages are pinned down by an outside good, then the system Z(w) = 0 has a unique

solution.19 With positive trade costs and more than two countries, our excess labor de-

mand system does not, in general, satisfy the gross-substitutes property, and so this

property can no longer be invoked for establishing a unique vector of wages for N > 2

and costly trade. While scale economies act to reinforce the gross substitutes property

when there are two countries, the same is not necessarily true for three or more coun-

tries. For instance, a rise in the wage in one country, say country 1, may reduce the

demand for labor there, while at the same time raising the demand for labor in another

19If we assume that there is a freely traded “outside good” industry in which production exhibits con-
stant returns to scale and assume that all countries produce a positive amount of this good, as is typically
done in the literature, then wages are exogenous and the proof from Proposition 1 — which is valid for any
finite N — implies a unique allocation of labor across industries. Note, however, that we need to assume
that all countries produce the outside good — if some countries do not produce that good then wages are
not pinned down and we do not have a proof of uniqueness for more than two countries for this case.
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country, say country 2, which is so far consistent with the gross substitutes property.

The complexities arise from the fact that the increased labor demand in country 2 can

generate productivity effects that can lead to increased exports to a third country, say

country 3, which can, in turn, result in a fall in the demand for labor there. In other

words, a rise in wages in country 1 can result in a fall in the demand for labor in coun-

try 3, thereby, violating the gross substitutes property.

A more powerful approach for proving that the equilibrium is unique is the Index

Theorem, which – roughly speaking – says that if the determinant of the negative of the

Jacobian of the normalized excess labor demand system (i.e., the Jacobian of −Z(w)

after removing the last column and the last row) is positive at any equilibrium wage

vector then there is at most one equilibrium (Kehoe, 1980). The challenge here is that

the Jacobian of the aggregate labor demand is the sum of the Jacobians of the labor

demand coming from each sector (i.e., DZ(w) =
∑

kDLk(w)), and establishing con-

ditions on the determinant of a sum of matrices is extremely difficult. Indeed, we have

a proof that the determinant of the negative of the normalized sector-level Jacobians

(i.e., −DLk(w) after removing the last column and the last row) is always positive, but

we have not been able to extend this property to the sum of those modified Jacobians. It

is natural to look for some property of matrices that implies a positive determinant and

that survives under summation and check that this property is satisfied by the negative

of the normalized sector-level Jacobians. Gross substitutes is one such property, but

as mentioned above it doesn’t hold for more than two countries.20 Another such prop-

erty is positive definiteness (including its extension to non-symmetric matrices), but

unfortunately we have examples in which the negative of the normalized sector-level

Jacobians are not positive definite.

An entirely different approach is to transform the equilibrium system into a map-

ping whose fixed point is a solution of that system, and then show that this mapping

is a contraction mapping. In principle, if there is a unique equilibrium, then such a

contraction mapping exists, but finding the right transformation is of course very chal-

lenging. We view the techniques explored in Allen, Arkolakis and Li (2015) as a variant

of this approach. In Appendix C we show how the equilibrium system of our economy

20Mathematically, gross substitutes implies that the negative of the normalized Jacobian is a diagonally
dominant Z matrix. This property survives under summation and implies a positive determinant.



24 KUCHERYAVYY-LYN-RODRı́GUEZ-CLARE

with αk = α for all k can be transformed to the kind of system for which Allen, Arkolakis

and Li (2015) establish sufficient conditions for uniqueness. Unfortunately, we find that

those sufficient conditions are not satisfied in our economy whenever α ≥ 0.

Lacking a proof, we have systematically looked for counter-examples via numerical

analysis, but we have found none. We report on this work in the next subsection.

3.3. Computation of Equilibrium

3.3.1. A Practical Algorithm for Finding an Equilibrium

The preceding analysis suggests two alternative approaches to numerically compute

an equilibrium. First, one can use an algorithm that properly deals with the comple-

mentary slackness conditions in the system of Equations (3) and (5) for (w,L). This re-

quires an algorithm for non-linear complementarity problems, such as the PATH solver

(Ferris and Munson, 1999). Second, one can follow the approach used above to prove

existence and uniqueness of equilibrium and break the problem in two steps: first, for

each wage vector w find Lk(w) for each k by solving the optimization problem asso-

ciated with (7), and second, find the wage vector such that the excess labor demand

Z(w) ≡
∑

k Lk(w) − L̄ is zero using the tatonnement iterative procedure proposed by

Alvarez and Lucas (2007).

It turns out, however, that a third approach does best. Consider the function w(T )

that one would get simply by solving for wages in the standard multi-sector model with

no scale economies and technology parameters T = {Ti,k}, and let Ldi,k(T ,w) be labor

demand as a function of technology parameters and wages also in that model. Let T (L)

be defined by Ti,k(L) = Si,kL
αk
i,k and let H(L) ≡ Ld(T (L),w(T (L))). By definition of

w(T ) we must have
∑

k L
d
i,k(T (L),w(T (L))) = L̄i for all i and L. Thus, if L∗ is an inte-

rior fixed point of the mapping H(L) then (w∗,L∗) = (w(T (L∗),L∗) is an equilibrium

of our economy with economies of scale. Since H(L) is a continuous mapping from

the compact set Λ ≡ {L|
∑

k Li,k = L̄i} to itself, then we can use the iterative procedure

given by Lt+1 = H(Lt) to compute the equilibrium points.

We have used this algorithm for counterfactual analysis with many countries and

sectors (see Subsection 4.4 and Section 5) and found that it can easily handle corners

and that it is very robust. We have also used this algorithm on economies with three or
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four countries, two sectors, α = 0.9 and randomly chosen values for all other param-

eters. Compared to a standard Newton method, it is slower but way more robust. We

randomly generated more than a million economies with three countries and two sec-

tors, and more than half a million economies with four countries and two sectors. In all

cases the algorithm using the iterative procedure with Lt+1 = H(Lt) found a solution,

whereas the Newton method found a solution only for some initial conditions.

Because the Newton method is faster, we used it in combination with our iterative

procedure in an effort to find examples with multiple equilibria. For each of the random

economies mentioned above, we computed the equilibrium with the iterative proce-

dure, and also with the Newton method with 400 different starting points. If there were

multiple equilibria, we would likely have one of the solutions of the Newton method be

different than the one found by the iterative procedure, but this never happened.21 For

the case with α = 0.9 we also computed the sign of the determinant of the (negative

of the) normalized excess labor demand evaluated at the equilibrium we found. By the

Index Theorem, a negative value would imply multiplicity. We always found this sign

to be positive.

3.3.2. A Rigorous Algorithm for Finding All Equilbria

The fact that we do not find different equilibria when starting from different initial con-

ditions does not prove that there is no multiplicity. To prove uniqueness of equilibrium

for a particular parameterization of our economy, we need a procedure that guaran-

tees to find all solutions to our system of complementary slackness conditions. One

approach for doing so is to transform our equilibrium system into a system of polyno-

mial equations, and then apply methods from algebraic geometry to find all solutions

of that transformed system. This is feasible in our case as long as all trade and scale

elasticities are rational numbers.22 An alternative approach is to exploit interval anal-

ysis, which provides methods for direct computation of outer bounds for the range of

21To check that this procedure delivers multiplicity when we know they exist, we used the same code
for α = 2. We find that this leads to multiple equilibria for randomly generated parameters with three
economies and two sectors.

22For a review of the use of algebraic geometry methods to find all solutions to systems of polynomial
equations, and the use of these techniques in economics, see Kubler, Renner and Schmedders (2014).
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values of a function evaluated in some interval.23 This approach has the benefit that

it can deal with the complementary slackness conditions that become relevant when

some α ≥ 1. Moreover, interval-arithmetic based algorithms for finding all solutions

of a system of non-linear equations are natural extensions of the bisection and Newton

methods that are well-known in economics.

The key idea of interval arithmetic is that instead of working with functions defined

over variables, we work with extensions of those functions that are defined over inter-

vals. Consider a function F : A → RN , with A ⊆ RN . Given that F satisfies certain

conditions (which are most likely to be satisfied for functions typically encountered in

economics), interval arithmetic can be used to construct a functionF operating directly

on intervals X ⊆ Awith the following properties: (i) for any interval X ⊆ A and any vec-

tor x ∈ X, if y = F (x), then y ∈ F(X);24 (ii) if [x, x] is the degenerate interval with unique

element x, then F([x, x]) = F (x); and (iii) the “smaller” is an interval X, the “tighter” is

the enclosure of the range of values of F over X by interval F(X).

Such interval extensions of regular functions are useful for characterizing solutions

of F (x) = 0. Indeed, property (i) guarantees that if 0 /∈ F(X) then there is no solution

to F (x) = 0 in X. Imagine then that 0 ∈ F(X0) for X0 ⊆ A. We can partition X0 into I

subintervals Xi for i = 1, . . . , I and check whether 0 ∈ F(Xi). If 0 ∈ F(Xi) for some i,

we can further partition the interval Xi and iterate, at each point discarding intervals X

for which 0 /∈ F(X). Up to a level of precision supplied in the algorithm, we can then

find all “small” intervals X such that 0 ∈ F (X). Property (iii) from above guarantees

that, if such intervals X are “small” enough, then they contain solutions to F (x) = 0.

This procedure is a multi-dimensional bisection algorithm and is essentially a rigorous

way of doing what economists sometimes call “grid search”. And, just as Newton-based

methods are preferable to bisection/“grid search” for finding solutions of systems of

equations whenever the relevant functions are differentiable, here too it is possible and

preferable to use interval analogs of Newton-based algorithms if F is differentiable.

23See Moore, Kearfott and Cloud (2009) for an excellent introduction to interval analysis. For a thorough
coverage of interval analysis methods see Hansen and Walster (2003).

24The converse is not required: we may have y ∈ F(X) with y 6= F (x) for all x ∈ X. To guarantee
this converse property, we essentially need to solve global minimization and maximization problems,
F ≡ minx∈X F (x) and F = maxx∈X F (x), and assign F(X) =

[
F , F

]
. Solving such optimization prob-

lems for each interval X is, of course, prohibitively expensive. One of the purposes of interval arithmetic is
construction of estimated bounds on the range of values of function F over an interval X with acceptable
tolerance and with as little effort as possible.
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We have built a Newton-based algorithm using interval arithmetic to find all solu-

tions of our system of complementary-slackness conditions (see Online Appendix) and

used this algorithm to find all equilibria for our economy with three countries and two

sectors for α = 0.9 and randomly chosen values for all other parameters. The typical

time it takes to run the algorithm for economies with three countries is about 40-60

hours. At the time of this writing, we have been able to run the algorithm for about

2.3 thousand parameterizations of our economy with three countries, and we always

found a unique equilibrium.25

4. Scale Economies and the Welfare Effects of Trade

In this section we explore the implications of scale economies for the welfare effects of

trade. We restrict the analysis to the case in which 0 ≤ αk ≤ 1 for all k. We first study

how scale economies affect the gains from trade and the welfare effects from trade lib-

eralization, and we conclude by quantifying the different effects using counterfactual

analysis when the model is made to be perfectly consistent with the data.

4.1. Gains from Trade

In principle, countries that specialize in industries with weak economies of scale could

even lose from trade — the premise of Frank Graham’s argument for protection. It turns

out, however, that this cannot happen if 0 ≤ αk ≤ 1 for all k. The formal proof is in the

Appendix D.1, but the basic idea can be understood by the following simple argument.

Setting wi = 1 by choice of numeraire, industry level price indices can be written as

P−εki,k = µ−εkk Si,kL
αk
i,k/λii,k. (8)

Without scale economies, gains from trade are assured by the fact that λii,k < 1 implies

Pi,k < µkS
−1/εk
i,k , where the RHS term is the price index under autarky. Scale economies

imply thatLi,k could fall with trade, and so now from Equation (8) we see thatPi,k could

be higher with trade relative to autarky. But note that in equilibrium we must have

25The algorithm can also be used to find all equilibria in the case when α = 1 or α > 1 for some indus-
tries. We have tried our algorithm for economies with two countries and two industries with α > 1 in one
industry and α < 1 in the other industry. In this case the algorithm was able to find multiple equilibria.
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Li,k > λii,kβi,kL̄i, since the RHS is just the total labor cost associated with domestic

sales. Combining this with Equation (8) yields P−εki,k > µ−εkk Si,k
(
βi,kL̄i

)αk λαk−1
ii,k . Thus,

if 0 ≤ αk ≤ 1 then Pi,k < µkS
−1/εk
i,k

(
βi,kL̄i

)−αk/εk , which is the price under autarky when

there are scale economies. As we can also see, if αk > 1 then one could have higher

prices in some industries with trade than without, leading to the possibility of losses

from trade. This argument establishes the following Proposition.

Proposition 6. If 0 ≤ αk ≤ 1 then all countries gain from trade.

Proof. See Appendix D.1.

This result can be seen as a generalization of Proposition 1 in Venables (1987), which

states that in a Krugman (1980) model with an “outside good” all countries gain from

trade. Formally, the model in Venables (1987) is isomorphic to ours when we consider

two countries and two industries, one having no trade costs, no scale economies, and

an infinite trade elasticity (the “outside good”), and the other having trade costs, scale

economies, and a finite trade elasticity, with αk = 1. Proposition 6 shows that this gen-

eralizes to a case without an “outside good”, with multiple sectors and arbitrary scale

economies as long as αk ≤ 1 for all k.

To further explore the implications of scale economies for the magnitude of the

gains from trade, we assume that the equilibrium is interior so that all trade shares

and labor allocations are strictly positive. This allows us to derive an expression for the

gains from trade as a function of industry-level data and the trade and scale elasticities

that extend the multi-sector expressions in Arkolakis et al. (2012) (henceforth ACR). 26

Real wages in the model with scale economies can be written as

wn/Pn = µn
∏
k

(
Sn,kL

εkψk
n,k λ−1

nn,k

)βn,k/εk
,

where µn ≡
∏
k µ
−1
n,k. Using the hat notation x̂ = x′/x, given some foreign shock (i.e., a

shock that does not affect the exogenous variables in country n), the change in welfare

in country n is

ŵn/P̂n =
∏
k

λ̂
−βn,k/εk
nn,k ·

∏
k

L̂
βn,kψk
n,k . (9)

26Given Proposition 1, the assumption that labor allocations are strictly positive is not restrictive for the
case with 0 ≤ αk < 1 for all k.
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The first term on the RHS of this expression is the standard multi-industry formula for

gains from trade (with upper-tier Cobb-Douglas preferences), while the second term is

an adjustment for scale economies.

To better understand this expression, we can use the fact that the welfare effect of an

infinitesimally small change in wages and prices is d lnWn = d lnwn −
∑

k βn,kd lnPn,k.

Totally log-differentiating λnn,k = (L−ψkn,k wn/Pn,k)
−εk and substituting into the previous

equation yields

d lnWn = −
∑
k

βn,k
d lnλnn,k

εk
+
∑
k

βn,kψkd lnLn,k. (10)

The first term term on the right hand side captures the welfare effect of an infinites-

imally small foreign shock taking home productivity as given, while the second term

captures the welfare effect of that shock through home productivity changes caused by

changing industry employment levels in the presence of scale effects. Of course, inte-

grating the first term over some discrete shock yields
∏
k λ̂
−βn,k/εk
nn,k , while integrating the

second term yields
∏
k L̂

βn,kψk
n,k .

Following ACR, we define the gains from trade as the negative of the percentage

change in real income as we move from the observed equilibrium to autarky,

GTn ≡ −
(

1− wAn /P
A
n

wn/Pn

)
.

We compute GTn by applying (9) and noting that for the move back to autarky we have

λ̂nn,k = 1/λnn,k, and L̂n,k = βn,k/rn,k, where rn,k ≡ Ln,k/L̄n denotes the industry rev-

enue (or employment) shares in the observed equilibrium. Using en,k ≡ Xn,k/Xn for

observed industry expenditure shares (of course, en,k = βn,k in the model), this leads

to a formula for the gains from trade that depends only on the country’s observables

λnn,k, en,k and rn,k as well as the trade and scale elasticities, εk and ψk,

GTn = 1−∆n

∏
k

λ
en,k/εk
nn,k , (11)

where

∆n ≡
∏
k

(en,k/rn,k)
en,kψk .



30 KUCHERYAVYY-LYN-RODRı́GUEZ-CLARE

The expression for the gains from trade in the standard perfectly competitive model

with no scale economies obtains from (11) by setting ψk = 0 for all k, thereby implying

∆n = 1. The implication of scale economies for the gains from trade then depends on

whether ∆n ≷ 1.

Consider first the case in which the scale elasticity is the same across industries

(ψk = ψ for all k) and note that

∆1/ψ
n = expDKL(en ‖ rn),

where rn ≡ (rn1, ..., rnK), en ≡ (en1, ..., enK), and

DKL(en ‖ rn) ≡
∑
k

en,k ln(en,k/rn,k) (12)

is the Kullback-Leibler divergence of rn from en. We can think of DKL(en ‖ rn) as a

measure of industry specialization in country n — in autarky we would have rn = en

and DKL(en ‖ rn) = 0, while if rn 6= en then DKL(en ‖ rn) > 0. This implies that

∆n > 1 (except if rn = en, in which case ∆n = 1) so that, given trade shares, scale

economies actually reduce the gains from trade, with a larger decline for higher values

of ψ and for countries that exhibit higher levels of specialization.27

We can gain intuition about this result by going back to equation (10) and noting

that if ψk = ψ for all k then the second term on the RHS of that equation can be writ-

ten as ψ
∑

k en,k
dLn,k
Ln,k

. A move back to autarky implies the expansion of industries with

net imports and hence a high expenditure share or low employment. In either case,

the expenditure-weighted productivity gain in expanding industries will be on average

higher than the expenditure-weighted productivity loss in contracting industries, and

hence ψ
∑

k en,k
dLn,k
Ln,k

> 0. After integration, this leads to ∆n > 1.

In the more general case in which ψk varies across k, ∆n can be rewritten as

∆n = exp ψ̄

[
DKL(en ‖ rn)−

∑
k

ψk − ψ̄
ψ̄

ln

(
rn,k
en,k

)en,k]
, (13)

27The opposite result would hold if instead of economies of scale we had diseconomies of scale. For
example, in a setting with ψ = 0 and worker-level heterogeneity, Galle et al. (2015) show that GTn =

1−
∏
k λ

en,k/εk
nn,k (en,k/rn,k)−en,k/κ, where κ is a parameter that determines the degree of heterogeneity. The

argument above now implies that the gains from trade are higher than in the case with no scale economies,
which obtains here in the limit as κ→∞, and corresponds to the case in which workers are homogeneous.
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where ψ̄ ≡ (1/K)
∑

k ψk. Notice that there are now two (possibly competing) forces: the

first measures the degree of specialization (DS) in country n as represented byDKL(en ‖

rn), while the second measures the pattern of specialization (PS), i.e., the tendency of

country n to specialize in industries with either higher or lower than average scale eco-

nomies as represented by
∑

k
ψk−ψ̄
ψ̄

ln (rn,k/en,k)
en,k . Since DS always pushes towards

lower gains relative to the case with no scale economies, the overall effect of scale eco-

nomies on gains from trade depends on the direction and magnitude of PS. Countries

that tend to specialize in industries with lower than average scale economies — so that

PS is negative — gain less from trade with scale economies than without. However, in

countries that tend to specialize in industries with higher than average scale economies

— so that PS is positive — the effect of scale economies on the gains from trade is am-

biguous. If for a country’s PS is strong enough to overcome its DS, then such a country

could have higher gains with than without scale economies (we explore a decomposi-

tion of these effects in the quantitative section below).

4.2. Welfare Effects from Trade Liberalization: Two Cases

In this section we consider two simple cases for which we can derive analytical results

for the welfare gains from a decline in trade costs. The goal is to understand how the

presence of scale economies affects the gains from trade liberalization.

4.2.1. Mirror-Image Countries

Our first example entails two industries and two mirror-image countries. Of course, for

mirror-image countries we know that wages will be the same, so we can just normalize

wages to one (w = 1) in both countries. For ease of exposition we index countries i =

H,F , where H and F represent Home and Foreign, respectively. Let L̄ = 2, βi,k = 1/2

for all (i, k), and let SH,1 = SF,2 = S and SH,2 = SF,1 = 1, for S > 1. Hence, Home has

the comparative advantage in industry 1, and Foreign in industry 2. We assume that

εk = ε and ψk = ψ for k = 1, 2.

To establish a link with the results in the previous subsection, we first illustrate that

the gains from trade are decreasing in ψ. We then show that the conclusion is reversed

once we consider a trade liberalization exercise in which trade shares respond endoge-

nously as we lower trade costs. There we find that the gains from trade liberalization
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are increasing in ψ.

Home’s gains from trade are simply

GTH = 1−
(

1/2

rH,1
· 1/2

1− rH,1

)ψ/2(
λ

1
2ε
HH,1 · λ

1
2ε
HH,2

)
. (14)

The term
(

1/2
rH,1
· 1/2

1−rH,1

)ψ/2
corresponds to ∆H in Equation (11) and is higher than one

as long as there is industry-level specialization.28 Thus, given trade shares, gains are

lower with scale effects (ψ > 0) than without (ψ = 0). It is also easy to see that these

gains are decreasing in ψ.
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Figure 1: Industry specialization and economies of scale

Next we study the gains from trade liberalization, allowing for endogenous responses

of trade shares to trade costs.29 We set ε = 5 and ψ = {0, 0.1, 0.2}. The case ψ = 0.2

implies α = 1, as in the standard multi-industry Krugman or Melitz-Pareto models

whereas the caseψ = 0 corresponds to the standard multi-industry gravity model with-

28The term 1/2
rH,1

· 1/2
1−rH,1

is minimized at rH,1 = 1/2, and specialization according to comparative ad-

vantage implies rH,1 > 1/2, hence we must have
(

1/2
rH,1

· 1/2
1−rH,1

)ψ/2
> 1.

29In the terminology of ACR, this corresponds to an “ex-ante analysis” whereas the results for the gains
from trade above correspond to an “ex-post analysis.”
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Figure 2: Gains from trade liberalization

out scale economies. Setting ψ = 0.1 allows for an intermediate case with 0 < α < 1.

Note that in all these cases Li,k = 1 for all (i, k) under autarky (i.e., when τ = ∞). As

τ falls from∞, country H specializes in industry 1 and country F specializes in indus-

try 2, but the extent of specialization will be stronger with ψ = 0.2 than ψ = 0.1, and

with ψ = 0.1 than ψ = 0, as illustrated in Figure 1. Figure 2 shows the implications

for the gains from trade liberalization for each of these three cases. We see that the

gains from trade liberalization increase with ψ. The intuition is simple: countries gain

by specializing according to comparative advantage, and the concentration of produc-

tion also allows for a greater exploitation of scale economies, which, in turn, generates

additional efficiency gains.30

4.2.2. Outside Good

The fact that, in the region of uniqueness, countries always gain from trade (relative

to autarky) does not necessarily imply that there are always gains from further trade

30The gains from trade liberalization in Home can be seen as the increase in GTH in (14) as τ falls. The
decline in τ leads to deeper industry-level specialization, as captured by a higher rH,1, and thus increases(

1/2
rH,1

· 1/2
1−rH,1

)ψ/2
and lowers GTH . But there is also a change in trade shares, and this decreases λ

1
2ε
HH,1 ·

λ
1
2ε
HH,2, which more than offsets the previous effect.
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liberalization. In fact, our model nests the model considered by Venables (1987) and so

we know that a decline in inward trade costs may decrease welfare. To see this more

explicitly, consider a case with two countries and two industries, with ε1 = ∞ > ε2,

ψ1 = 0 < ψ2 ≤ 1/ε2 (so that α2 ≤ 1), and with no trade costs in industry 1, τ12,1 =

τ21,1 = 1. If we start with an interior equilibrium (i.e., Li,k > 0 for i = 1, 2 and k = 1, 2)

then wages are pinned down by (exogenous) productivities in industry 1 (the outside

good), and — suppressing the industry sub-index — the labor allocation in industry 2

is given by (L1, L2) that solves

wiLi =
∑
n

SiL
α
i (wiτni)

−ε P εnβnwnL̄n, (15)

for i = 1, 2, with P−εn =
∑

j SjL
α
j (wjτnj)

−ε. The case considered by Venables (1987)

entailsα = 1, in which case the previous system can be rewritten as a system in (P1, P2),

wi =
∑
n

Si (wiτni)
−ε P εnβnwnL̄n. (16)

It is then easy to see that a decline in τ12 leads to an increase in P1 and a decrease in P2,

exactly as in Venables (1987). Of course, if α = 0 then P−εn =
∑

j S
α
j (wjτnj)

−ε and so P1

would decrease while there would be no change in P2.

We can understand these results by noting that wn/Pn = S
1/ε
n Lψnλ

−1/ε
nn . If ψ = 0 then

a decline in inward trade costs decreases the domestic trade share λnn and increases

the real wage. But with ψ > 0 there is an offsetting productivity effect arising from the

decline in Ln. If α = 1 then the net effect is negative.

More generally, we can use Equation (15) to show that ∂Pn/∂τni < 0, as with α =

1, if and only if α ∈ (ᾱn,τ , 1], where ᾱn,τ ∈ (0, 1) is a function of import and export

shares in industry 2 — see Appendix D.2. A similar result holds for the effect of a foreign

productivity increase in industry 2: this lowers welfare (i.e., ∂Pn/∂Si > 0 for n 6= i) if

and only if α ∈ (ᾱn,S , 1], where ᾱn,S is different from ᾱn,τ because of additional effects

associated with a productivity increase. Formally,

Proposition 7. Assume there are two countries and two industries, with industry 1 play-

ing the role of an outside good (i.e., ε1 = ∞, ψ1 = 0 and τ12,1 = τ21,1 = 1) and industry

2 having scale economies with α > 0. Assume that the initial equilibrium is interior
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(i.e., Li,k > 0 for i = 1, 2 and k = 1, 2). There exists a threshold ᾱn,τ ∈ (0, 1) such that

country n loses from a small unilateral trade liberalization in industry 2 if and only if

α ∈ (ᾱn,τ , 1]. Similarly, there exists a threshold ᾱn,S ∈ (0, 1) such that country n loses

from a small foreign productivity improvement in industry 2 if and only if α ∈ (ᾱn,S , 1].

Proof. See Appendix D.2.

These results generalize the propositions of immiserizing inward trade liberaliza-

tion and foreign productivity improvements in Venables (1987) in two ways. First, the

result holds as long as scale economies are strong enough, with the threshold for α de-

pending on import and export shares in the industry with scale economies. Second,

and more broadly, the result is shown to be a manifestation of the more general idea

that a shock that pushes a country to specialize in an industry with weak economies of

scale (here the outside good) may lower the gains from trade.

4.3. Gains from Trade: Numbers Using Data

In this subsection we continue our exploration of the gains from trade using actual

data. Using (11) as our reference point, we follow CR and compute measures of λnn,k,

en,k, and rn,k using data on 31 sectors from the WIOD in 2008.31 We start by assuming

a common trade elasticity of 5 for all industries (i.e., εk = 5 for all k) and consider two

cases for the scale elasticity.32 For the first case we assume a common scale elasticity

across all industries and consider three subcases: (i) no scale economies, ψk = 0 for all

k; (ii) intermediate scale economies, ψk = 0.1 for all k; and (iii) strong scale economies,

ψk = 0.2 for all k. Note that these three subcases correspond to assuming αk = 0 for all

k, αk = 0.5 for all k, and αk = 1 for all k, respectively. For the second case we assume

no scale economies for all non-manufacturing industries and strong scale economies

for all manufacturing industries, i.e., ψk = 0 for all k /∈ M and ψk = 0.2 for all k ∈ M,

where M is the set of manufacturing industries. This case is used below to understand

how specialization in industries with weak or strong scale economies affects the gains

31Equation (11) ignores trade deficits. As discussed in CR, this implies that our results in this subsection
capture the change in real income rather than the change in real expenditure caused by shutting down
trade and closing any trade deficits that exist in the data.

32We choose a value of 5 for the trade elasticity as this is a typical value used in the literature — see Head
and Mayer (2014).
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from trade.

Table 2: Gains from Trade, Common Elasticities

Gains from Trade
Degree of

specialization

ψk = 0

common
ψk = 0.1

common
ψk = 0.2

common
ψk = 0.2

manuf.
All

industries
Manuf.

only

Country (1) (2) (3) (4) (5) (6)

AUS 3.0% 2.7% 2.3% 2.1% 0.036 0.048
BEL 13.8% 13.2% 12.5% 14.0% 0.072 -0.012
BRA 1.6% 1.6% 1.5% 1.5% 0.004 0.004
CHN 3.0% 2.8% 2.7% 3.5% 0.016 -0.025
GRC 5.7% 4.6% 3.6% 3.5% 0.110 0.114
JPN 2.4% 2.0% 1.6% 2.9% 0.041 -0.023
KOR 6.6% 5.3% 4.1% 7.3% 0.133 -0.037
USA 2.1% 2.0% 1.9% 1.7% 0.007 0.020

Average 6.3% 5.9% 5.6% 6.1% 0.040 0.008

Columns 1, 2 and 3 in Table 2 report the gains from trade for the first case with scale

elasticities as in subcases (i), (ii) and (iii), respectively, while column 5 reports the de-

gree of industry specialization as represented by the term DKL(en ‖ rn). This table as

well as the ones below present results for a select set of countries — tables with the full

set of countries in the WIOD are presented in Appendix D.5. Consistent with Propo-

sition 6, gains from trade decrease as we allow for stronger scale economies, and this

decline is stronger for countries that have a higher degree of industry specialization.

This is illustrated in Figure 3, which plots the gains from trade net of the standard ACR

gains (i.e., the gains that would arise in the absence of scale economies) for each sub-

case.

Turning to the second case, note that here we have

GTn = 1−

(∏
k

(λnn,k)
en,k exp

[∑
k∈M

en,k ln (en,k/rn,k)

])0.2

.

The term
∑

k∈M en,k ln (en,k/rn,k) is no longer the Kullback-Leibler divergence because
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Figure 3: Degree of specialization and gains from trade

we are only adding across k ∈ M, so both
∑

k∈M en,k and
∑

k∈M rn,k can be lower than

1. This implies that this term can be negative (capturing specialization in manufac-

turing) and exert a positive effect on the gains from trade. Column 4 in Table 2 re-

ports the gains from trade associated with this case, while column 6 reports the term∑
k∈M en,k ln (en,k/rn,k). As expected, countries that specialize in manufacturing indus-

tries have higher gains from trade than in the case without scale economies. Figure 4

illustrates this by plotting the pattern of specialization (PS) — measuring in this case

the tendency to specialize in manufacturing — against the the degree of specialization

(DS) for selected countries as defined in (13). For each point we also report the name

of the country, the standard ACR gains and the gains with αk = 1 in all manufacturing

industries, respectively.

Next, we allow for heterogeneous trade elasticities across industries. Trade elastic-

ities for agriculture and manufacturing industries are from Caliendo and Parro (2015),

while for service industries we assume a trade elasticity of 5.33 For each industry we

33Since there is little trade in services the value of that elasticity has negligible effects.
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Figure 4: Pattern of specialization and gains from trade

maintain the assumption that the scale elasticity is inversely proportional to the trade

elasticity and, consistent with our first exercise, separately consider three cases: (i)

ψk = 0 for all k, (ii) ψk = 0.5/εk for all k, and (iii) ψk = 1/εk for all k.

The gains corresponding to these three cases are reported in columns 1, 2 and 3 of

Table 3.34 While cross-country average gains from trade are not very different across

the three cases, we do see that for some countries the gains can be substantially larger

with economies of scale, while for others these gains are much smaller. For example,

relative to the case with no scale economies, Japan’s gains almost double in the inter-

mediate case, and almost triple in the case with the highest scale elasticity (to be pre-

cise, gains are 2.4%, 4.3% and 6.1%, respectively), whereas for Greece the reverse is true

(gains are 14.5%, 10.1% and 5.5%, respectively). Still for other countries these gains do

not change much. For example, in Austria’s case gains are 29.1%, 29.3% and 29.4%.

34The results in columns 1 and 3 are are similar to those reported in columns 2 and 3 of Table 4.1 in CR.
The difference is due to the way expenditure shares, βn,k, are inferred from the data. CR calculate βn,k
as shares of final consumption, while in this paper we calculate βn,k as shares of total expenditure. This
distinction is not important for our model because it does not feature intermediates.
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Table 3: Gains from Trade, Caliendo-Parro elasticities

Gains from Trade
Degree and Pattern

of Specialization

ψk = 0 ψk = 0.5
εk

ψk = 1
εk

DS PS Overall

Country (1) (2) (3) (4) (5) (6)

AUS 7.6% 5.5% 3.5% 0.036 -0.111 0.147
BEL 29.8% 29.6% 29.3% 0.072 0.051 0.021
BRA 3.4% 3.6% 3.9% 0.004 0.019 -0.015
CHN 4.1% 4.0% 4.0% 0.016 0.013 0.003
GRC 14.5% 10.1% 5.5% 0.110 -0.230 0.340
JPN 2.4% 4.3% 6.1% 0.041 0.173 -0.133
KOR 6.2% 8.7% 11.2% 0.133 0.318 -0.185
USA 4.5% 4.4% 4.3% 0.007 0.000 0.007

Average 14.6% 14.2% 13.7% 0.040 0.008 0.032

To better understand these results, Table 3 reports the DS, PS and overall effect

on gains (i.e., the term inside the square parenthesis on the RHS of Equation (13)) in

columns 4, 5 and 6, respectively. On closer examination we now see that Japan’s ten-

dency to specialize in industries with higher than average scale economies (PS is pos-

itive) is dominant enough to overpower DS, thereby implying larger gains from trade

relative to the standard framework without scale economies. In contrast, for Greece

the tendency to specialize in industries with lower than average scale economies (PS

is negative) reinforces DS, implying lower gains from trade. Interestingly, while the re-

sults also reveal China’s tendency to specialize in industries with higher than average

scale economies (PS is higher than zero), the extent of this pattern of specialization is

not sufficient to imply larger overall gains from trade. Finally, notice that these results

generalize insights from the previous case in which scale economies are assumed only

in manufacturing industries.
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4.4. Gains from Trade Liberalization and Foreign Productivity Gains

We now use the exact hat algebra approach popularized by Dekle, Eaton and Kortum

(2008) to explore the implications of a decline in inward trade costs or productivity

gains abroad. This technique works as long as we start from an equilibrium that does

not have corners, which is the case in our data as there are no (i, k) pairs with Li,k = 0.

As we show in Appendix D.3, the system to compute the hat changes in labor allocations

and wages is

L̂i,k ≥ 0, G′i,k
(
ŵ, L̂k

)
≥ 0, L̂i,kG

′
i,k

(
ŵ, L̂k

)
= 0, for all (i, k),

∑
k

L̂i,kYi,k = Yi, for all i,

where Yi ≡ wiL̄i and Yi,k ≡ wiLi,k, and

G′i,k
(
ŵ, L̂k

)
≡ ŵi −

1

L̂i,kYi,k

∑
n

Ŝi,kL̂
αk
i,k (ŵiτ̂ni,k)

−εk λni,k∑
l Ŝl,kL̂

αk
l,k (ŵlτ̂nl,k)

−εk λnl,k
βn,k(ŵnYn +Dn),

whereDn are trade imbalances in the data. Note that this still allows the counterfactual

equilibrium to exhibit corner allocations. Therefore, we need to calculate changes in

welfare explicitly by using the formula ŵn/P̂n, where changes in price indices are given

by

P̂n =
∏
k

(∑
l

Ŝl,kL̂
αk
l,k (ŵlτ̂nl,k)

−εk λnl,k

)−βn,k/εk
.

We use the algorithm outlined in Section 3.3 to compute ŵ and L̂ given some ex-

ogenous shock to trade costs or technology levels. A detailed description of the algo-

rithm is in Appendix D.4. Theoretical results from Section 4.2.2 suggest that there might

be losses from unilateral trade liberalization or foreign productivity improvements. To

explore these theoretical results quantitatively, we again divide all sectors into manu-

facturing (M) and non-manufacturing. We assume that non-manufacturing sectors do

not exhibit economies of scale (αk = 0 for these sectors), while for the manufactur-

ing sectors we consider three possible scenarios: “low” α (αM = 0), “intermediate” α

(αM = 1/2), and “high” α (αM = 1).
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Table 4: Inward Trade Liberalization and Foreign Productivity Improvement

τ̂ni,k = 0.9 ∀ k ∈M ŜCHN,k = 1.01εk ∀ k ∈M

αM = 0 αM = 0.5 αM = 1 αM = 0 αM = 0.5 αM = 1

Country (1) (2) (3) (4)* (5)* (6)*

AUS 0.64% 0.51% 0.25% 0.94% 0.31% -0.76%
BEL 1.89% 1.81% 1.45% 0.16% -0.11% -0.44%
BRA 0.35% 0.26% 0.16% 0.32% 0.10% -0.13%
CHN 0.63% 0.54% 0.43% 48.87% 50.99% 53.08%
GRC 0.90% 0.64% 0.08% 0.62% 0.27% -0.22%
JPN 0.30% 0.25% 0.20% 0.00% -0.15% -0.17%
KOR 0.80% 0.68% 0.53% -0.00% -0.55% -0.97%
USA 0.39% 0.30% 0.17% 0.28% 0.05% -0.17%

* The numbers specified in the column have been multiplied by 100.

In the first three columns of Table 4 we present results of the exercise where a coun-

try unilaterally lowers trade costs with all other countries by 10% in manufacturing in-

dustries. Each row in these columns presents welfare implications of this exercise for

a particular country. For example, the row corresponding to the United States presents

welfare changes for that country given with τ̂ni,k = 0.9 for n = US and all k ∈ M and

with all other parameters unchanged. In the last three columns of Table 4 we present

the welfare implications of productivity increase of 1% in all manufacturing sectors in

China, Ŝik = 1.01εk for i = China and all k ∈M.35

The results in Table 4 reveal that the gains from unilateral trade liberalization in the

sectors with scale economies get smaller as we consider a higher scale elasticity. For

example, the gains for the United States decline from 0.39% when αM = 0 to 0.17% for

αM = 1. Still, in contrast to the results of Section 4.2.2, even for αM = 1 the gains are

positive for all countries. One key difference between the theoretical exercise in Sec-

tion 4.2.2 and the quantitative exercise in Table 4 is that in the theoretical exercise we

have an outside good that pins down wages, whereas in the quantitative exercise wages

fully adjust in response to the shock. In Table 5 we considered the same change in trade

costs as in the first three columns of Table 4 but holding wages fixed. As we see in the
35Holding wages fixed, the hat change in the domestic price index of country i in sector k given some

Ŝik is Ŝ1/εk
i,k . That is why, to think of an x% productivity increase in China’s sector k, we set Ŝi,k = (1 +x)εk .
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last column of Table 5, now Japan and Korea experience losses from unilateral trade

liberalization in manufacturing if αM = 1. To get even closer to the theoretical exercise

in Section 4.2.2, we aggregated all sectors into manufacturing and non-manufacturing

and all countries into the liberalizing country and the rest of the world. Columns 4-6

of Table 5 report the results associated with a shock τ̂ni,M = 0.9, whereas columns 1-3

report those associated with a smaller shock τ̂ni,M = 0.99. Column 6 shows that now

most countries lose from unilateral trade liberalization when αM = 1, while in column

3 we see that all countries lose. The reason that some countries still gain in the case of

the larger shock is that the shock pushes them to a corner equilibrium in which they no

longer allocate any labor to manufacturing.

Table 5: Unilateral Trade Liberalization with Fixed Wages

τ̂ni,k = 0.99 ∀ k ∈M τ̂ni,k = 0.9 ∀ k ∈M

2× 2 N × S

αM = 0 αM = 0.5 αM = 1 αM = 0 αM = 0.5 αM = 1 αM = 0 αM = 0.5 αM = 1

Country (1) (2) (3) (4) (5) (6) (7) (8) (9)

AUS 0.08% 0.05% -0.00% 0.91% 0.69% -0.00% 0.89% 0.71% 0.22%
BEL 0.19% 0.18% -0.01% 2.12% 2.08% 1.44% 2.10% 2.05% 1.75%
BRA 0.05% 0.03% -0.00% 0.60% 0.36% -0.00% 0.59% 0.38% 0.03%
CHN 0.08% 0.05% -0.01% 1.04% 0.68% -0.09% 1.01% 0.79% 0.91%
GRC 0.12% 0.08% -0.00% 1.40% 1.08% -0.00% 1.37% 1.12% 0.51%
JPN 0.04% 0.03% -0.00% 0.55% 0.35% -0.02% 0.54% 0.36% -0.01%
KOR 0.11% 0.07% -0.00% 1.35% 0.97% -0.02% 1.34% 0.98% -0.06%
USA 0.06% 0.04% -0.00% 0.70% 0.48% -0.04% 0.68% 0.55% 0.47%

Turning to the gains from foreign productivity improvements in the industries with

scale economies, the last three columns of Table 4 show that some countries lose when

China’s productivity increases in manufacturing. Negative values in column 4 simply

reflect terms of trade effects, which worsen for countries that compete more directly

with China. Columns 5 and 6 show additional effects arising from the mechanism out-

lined in Section 4.2.2. In particular, China’s productivity increase in manufacturing im-

plies a contraction in manufacturing employment in other countries, which in turn

leads to a decline in productivity given the presence of scale economies in that sector.
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Thus, we see more and more countries losing from China’s productivity increase as the

strength of scale economies increases to αM = 1/2 and then to αM = 1.

Table 6: Foreign Productivity Improvement with Fixed Wages

ŜRoW,k = 1.01εk ∀ k ∈M ŜRoW,k = 2εk ∀ k ∈M ŜCHN,k = 1.01εk ∀ k ∈M

2× 2 N × S

αM = 0 αM = 0.5 αM = 1 αM = 0 αM = 0.5 αM = 1 αM = 0 αM = 0.5 αM = 1

Country (1)* (2)* (3)* (4) (5) (6) (7)* (8)* (9)*

AUS 7.47% 3.05% -7.11% 10.31% 10.14% 10.15% 1.66% 1.13% -0.62%
BEL 18.97% 14.73% -85.11% 16.81% 16.79% 16.81% 1.05% 0.30% -3.95%
BRA 4.61% 0.46% -5.33% 11.09% 10.27% 10.15% 0.88% 0.36% 0.25%
CHN 8.02% -0.67% -16.28% 19.14% 18.96% 20.14% 40.93% 47.40% 74.24%
GRC 11.74% 6.95% -4.39% 14.25% 14.09% 14.09% 0.87% 0.28% 0.48%
JPN 4.22% -0.68% -8.31% 10.38% 9.75% 9.87% 1.48% 0.25% -3.19%
KOR 10.66% 0.46% -20.93% 19.66% 19.05% 19.13% 3.45% 0.74% -11.19%
USA 5.53% 1.98% -4.81% 9.36% 9.37% 9.68% 1.36% 0.86% -0.02%

* The numbers specified in the column have been multiplied by 100.

We explore these findings further in Table 6, where (as in Table 5) we fix wages to

the baseline equilibrium (i.e., ŵi = 1). With no terms of trade changes, now all coun-

tries gain from China’s productivity increase if there are no scale economies (column 7),

and more and more countries lose as scale economies become stronger. To link these

findings with the theoretical results in Section 4.2.2, the first three columns of Table 6

show analogous results but after aggregating to two sectors (manufacturing and non-

manufacturing) and two countries (the country in each row and the rest of the world).

Columns 1 and 2 show that almost all countries gain from a productivity increase in

manufacturing in the rest of the world if αM ≤ 1/2 but all countries lose when αM = 1,

a reflection of the fact that in most cases the actual threshold ᾱS derived in Section

4.2.2 is high and close to 1. A final set of results is presented in columns 4-6, which

show analogous results to those in columns 1-3 but for a doubling of foreign productiv-

ity. Interestingly, this now leads to gains in all countries. The reason is that the shock is

so large that manufacturing employment falls to zero in all countries, thus truncating

the mechanism in Section 4.2.2 since a sector cannot keep shrinking after it vanishes.
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5. Scale Economies and Trade Flows

In this subsection we quantify the role of scale economies in determining industry-level

specialization and trade flows. In particular, we ask how these variables would change

if we shut down scale economies but leave all other exogenous variables unchanged.

We rely on the fact that if L is an equilibrium of the actual economy with scale eco-

nomies then it is also an equilibrium of the economy with no scale economies given

by

wiLi,k =

N∑
n=1

Ti,k (wiτni,k)
−εk∑N

l=1 Tl,k (wlτnl,k)
−εk βn,k(wnL̄n +Dn)

and
K∑
k=1

Li,k = L̄i,

where Ti,k ≡ Si,kL
αk
i,k and where Dn are trade deficits satisfying

∑
nDn = 0. Thus, if we

want to know the counterfactual allocation for the economy withαk = 0 for all k but ev-

erything else equal, we can use the exact hat algebra approach in the economy with no

scale effects subjected to a shock to productivities Ti,k given by T̂i,k = S′i,k/
(
Si,kL

αk
i,k

)
=

Ŝi,kL
−αk
i,k .36 To focus on the interaction between specialization and scale economies, we

assume that Ŝi,k is such that if country i was in autarky then the shock would have no

effect on productivity — since in autarkyLi,k = βi,kL̄i this requires Ŝi,k = (βi,kL̄i)
αk . Us-

ingLi,k = ri,kL̄i and measuring βi,k by ei,k, this implies that T̂i,k = (ei,k/ri,k)
αk . Combin-

ing the two previous equations and using Yi ≡ wiL̄i, we get a system in wage changes

given by

ŵiYi =
K∑
k=1

N∑
n=1

(ei,k/ri,k)
αk (ŵi)

−εk λni,k∑N
l=1(el,k/rl,k)αk (ŵl)

−εk λnl,k
en,k (ŵnYn +Dn) .

The solution for ŵi can then be used to get the implied hat change in the labor alloca-

tion from

L̂i,k =
1

ŵiYi,k

N∑
n=1

(ei,k/ri,k)
αk (ŵi)

−εk λni,k∑N
l=1(el,k/rl,k)αk (ŵl)

−εk λnl,k
en,k (ŵnYn +Dn) ,

36We can ignore corner solutions because the data has no zeros at the industry level (i.e., ri,k > 0 for all
i, k) and the shock that we consider moves us away from corners.
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where Yi,k ≡ wiLi,k. Finally, we can get the implied change in trade flows from

X̂ni,k =
1

Xni,k
·

(ei,k/ri,k)
αk (ŵi)

−εk λni,k∑N
l=1(el,k/rl,k)αk (ŵl)

−εk λnl,k
en,k (ŵnYn +Dn) .

Table 7 presents the results of this exercise for each of the countries in our sam-

ple. Column 1 reports the degree of specialization (DS) in the data as defined in (12).

Columns 2 and 3 report, respectively, the implied percentage change inDS and in total

exports for each country when αk = 1/2 and εk = 5 for all k. Columns 4 and 5 do the

same but for αk = 1.

Table 7: Scale and Trade Flows

α = 0.5 α = 1

DSi D̂Si ÊXi D̂Si ÊXi

Country (1) (2) (3) (4) (5)

AUS 0.04 -60.80% -9.44% -93.03% -16.61%
BEL 0.07 -64.83% -0.86% -98.20% -0.36%
BRA 0.00 -27.81% -3.99% -49.37% -7.73%
CHN 0.02 -50.09% -5.71% -77.27% -10.19%
GRC 0.11 -80.81% -34.11% -92.28% -36.71%
JPN 0.04 -64.05% -7.84% -91.77% -16.35%
KOR 0.13 -64.98% -7.19% -94.25% -17.12%
USA 0.01 -47.24% -4.85% -71.86% -8.63%

As expected, the removal of economies of scale implies a decline in the degree of

specialization and total trade. Column 2 shows that the decline in DS is quite strong

even in the case in which the initial economies of scale are given by αk = 1/2 for all k,

with DS falling by more than 50% in almost all cases. Column 4 shows that this decline

is much sharper in the case of αk = 1 for all k, with DS falling by more than 70% in

almost all cases, and in several cases by more than 90%. Columns 3 and 5 show that

total exports fall but less dramatically: the decline in total world exports corresponding

to these two columns is 5.4% and 10%.

These results imply that if the data is generated by a gravity model with scale econo-

mies as strong as in the Krugman model (i.e.,αk = 1 for all k), then most of the industry-

level specialization that we observe is due to scale economies rather than Ricardian
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comparative advantage. In other words, without scale economies amplifying Ricardian

productivity differences, industry-level specialization would be, in many cases, more

than 90% less than what we see in the data. In contrast, since most of world trade is

intra-industry trade, scale economies as strong as in the Krugman model would be re-

sponsible for only around 10% of total world trade.

6. Concluding Remarks

For over a century since Alfred Marshall’s initial exposition, economists have been in-

trigued with the implications of industry-level external economies of scale for trading

economies. Despite such interest, however, the discomfort with the plethora of equilib-

ria and counter-intuitive implications in early work relegated Marshallian externalities

to the “back-burner” of the recent trade literature. In this paper we show how one can

add Marshallian externalities to the Eaton and Kortum (2002) framework while retain-

ing the property that the equilibrium is unique. The resulting model has exactly the

same mathematical structure as generalized versions of the multi-industry Krugman

and Melitz-Pareto models and so our uniqueness result applies to these well-known

models as well. The key condition for uniqueness is simple and intuitive: the scale

elasticity must be weakly lower than the inverse of the trade elasticity for all industries.

The model is rich in welfare implications. Most importantly, if parameters are in

the region of uniqueness then all countries gain from trade. Economies of scale tend to

make gains from trade lower and gains from trade liberalization higher relative to mod-

els without scale economies, with results more positive for countries that specialize in

industries with stronger than average scale economies.

Finally, our exploration of the role of economies of scale in explaining trade flows

and industry-level specialization in the data yields very definitive results: if scale eco-

nomies are as strong as those in the Krugman or Melitz-Pareto models then most of the

industry-level specialization that we see in the data is due to economies of scale rather

than pure Ricardian comparative advantage.

Many questions remain open for future research. How can we extend our unique-

ness results for endogenous wages beyond the cases ofN = 2 or frictionless trade? How

can we robustly estimate the strength of industry-level scale economies? Is the condi-
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tion necessary for uniqueness likely to be satisfied? Are scale economies stronger in

some industries than others? If so, which ones? How does the presence of industry-

level scale economies affect country-level and world-level optimal trade policies?

A. Definitions

It is clear that both functionsGi,k (w,Lk) and Li,kGi,k (w,Lk) which appear in the non-

linear complementarity problem (3) are well-defined for all positive wages and positive

labor allocations, i.e., for all w ∈ RN++ and Lk ∈ RN++. We are interested in extending

the definitions of Gi,k (w,Lk) and Li,kGi,k (w,Lk) to the set of all non-negative labor

allocations excluding the point with Li,k = 0 for all i, i.e., to the set RN+ \ {0}. To this

end, we allow for functionGi,k (w,Lk) to take infinite values. Formally, we consider the

function Gi,k : RN++ ×RN+ \ {0} → R ∪ {−∞,+∞},37 and for each given vector of wages

w ∈ RN++ and vector of labor allocations Lk ∈ RN+ \ {0} we formally define Gi,k (w,Lk)

and Li,kGi,k (w,Lk) by the limits

Gi,k (w,Lk) ≡ lim
xt→Lk

[
wi −

1

xti

∑
n

λni,k(w,x
t)βn,kwnL̄n

]

and

Li,kGi,k (w,Lk) ≡ lim
xt→Lk

xti

[
wi −

1

xti

∑
n

λni,k(w,x
t)βn,kwnL̄n

]
,

where
{
xt
}∞
t=1

is any sequence converging to Lk such that xt ∈ RN++ for t = 1, 2, . . . .

Let us verify that functions Gi,k (w,Lk) and Li,kGi,k (w,Lk) are well-defined. Since

for allLk ∈ RN++ functionsGi,k (w,Lk) andLi,kGi,k (w,Lk) are well-defined and contin-

uous, the above limits coincide with the values of these functions in the corresponding

points.

Next, consider any sequence
{
xt
}∞
t=1

with xt ∈ RN++ for t = 1, 2, . . . and converging

37Here the set R ∪ {−∞,+∞} is the extended real number system with symbols−∞ and +∞ following
the standard conventions (see, for example, p. 11-12 in Rudin, 1976). In particular, for any x ∈ R, −∞ <
x < +∞.
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to Lk. We have

lim
xt→Lk

1

xti

∑
n

λni,k(w,x
t) = lim

xt→Lk

[
xti
]αk−1

∑
n

Si,k (wiτni,k)
−εk∑

l Sl,k
[
xtl
]αk (wlτnl,k)

−εk βn,kwnL̄n.

Then, since, Lk 6= 0,

lim
xt→Lk

∑
l

Sl,k
[
xtl
]αk (wlτnl,k)

−εk =
∑
l

Sl,kL
αk
l,k (wlτnl,k)

−εk > 0 for all n.

Hence, limxt→Lk

1

xti

∑
n λni,k(w,x

t) =∞ if Li,k = 0 and 0 ≤ αk < 1, and

limxt→Lk

1

xti

∑
n λni,k(w,x

t) is a positive number if Li,k > 0 or if αk ≥ 1. This, in turn,

implies that

Gi,k (w,Lk) = lim
xt→Lk

[
wi −

1

xti

∑
n

λni,k(w,x
t)βn,kwnL̄n

]

=

−∞, if Li,k = 0 and 0 ≤ αk < 1,

finite number, if Li,k > 0 or αk ≥ 1.

So, the limit always exists and is either −∞ or a finite number. Hence, function Gi,k is

well-defined with its codomain given by the extended real line R ∪ {−∞,+∞}.

Similarly, it is easy to verify that limxt→Lk x
t
i

[
wi −

1

xti

∑
n λni,k(w,x

t)βn,kwnL̄n

]
al-

ways exists. Moreover, this limit is always a finite number. Hence, function Li,kGi,k is

also well-defined.

B. Linking Melitz and Marshall

We consider a generalized Melitz-Pareto framework, in which the elasticity of substi-

tution between varieties from different countries, ηk, is different from the elasticity of

substitution between varieties from the same country, σk.

Let us ignore the industry subscript for a moment. Let Ωni denote the set of varieties

that i sells to n. The price index of these goods is Pni ≡
(∫

ω∈Ωni
pni(ω)1−σdω

) 1
1−σ

. Let

Mi denote total entry in country i and ϕ∗ni denote the cutoff productivity such that i



GROUNDED BY GRAVITY 49

exports to n all goods with productivity higher than ϕ∗ni. We have

P 1−σ
ni = Mi

∫ ∞
ϕ∗ni

[pni(ϕ)]1−σ dGi(ψ)

= θbθiMi

[
σ

σ − 1
wiτni

]1−σ ∫ ∞
ϕ∗ni

ϕσ−θ−2dϕ

= Mi

[
σ

σ − 1
wiτni

]1−σ bθi (ϕ∗ni)
σ−θ−1

θ − (σ − 1)
.

The condition that determines the cutoff ϕ∗ni is

1

σ

(
σ

σ − 1
· wiτni
ϕ∗ni

)1−σ
P σ−1
ni

(
Pni
Pn

)1−η
Xn = wnfn.

This implies that

ϕ∗ni =
wiτni
Pni

(
σ

σ̃
· wnfn
Xn

) 1
σ−1

(
Pni
Pn

) 1−η
1−σ

,

where σ̃ ≡
(

σ
σ−1

)1−σ
. Plugging this expression into the expression for the price index

yields

Pni = wiτni

(
wiτni
Pni

(
Xn

wnfn

) 1
1−σ

(
Pni
Pn

) 1−η
1−σ
) θ

σ−1
−1

M
1

1−σ
i κ̄oi,k,

where

κ̄oi,k ≡
σ

σ − 1

bθi
[σ
σ̃

]1− θ
σ−1

θ − (σ − 1)


1

1−σ

.

Bringing back the k subindex and using the well known result that in this model

equilibrium entry in each industry must satisfy Mi,k = σk−1
σkθk

Li,k
Fi,k

, we then have

Pni,k = wiτni,k

wiτni,k
Pni,k

(
Xn,k

wnfn

) 1
1−σk

(
Pni,k
Pn,k

) 1−ηk
1−σk


θk

σk−1
−1

L
1

1−σk
i,k κoi,k.
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where κoi,k ≡
(
σk−1
σkθk

F−1
i,k

) 1
1−σk κ̄oi,k. Using Xn,k = βn,kwnL̄n we get

Pni,k = wiτni,k

wiτni,k
Pni,k

(
Pni,k
Pn,k

) 1−ηk
1−σk


θk

σk−1
−1

L
1

1−σk
i,k κdn,kκ

o
i,k,

where

κdn,k ≡
[
βn,kL̄n
fn,k

] 1
1−σk

(
θk

σk−1
−1

)
.

Solving for Pni,k we get

P 1−ηk
ni,k =

[
(wiτni,k)

−θk P
1−ηk
1−σk

(θk−σk+1)

n,k Li,k(κ
d
n,kκ

o
i,k)

1−σk

]ξk
.

where ξk is as defined in the text. Using P 1−ηk
n,k =

∑
i P

1−ηk
ni,k and λni,k =

(
Pni,k
Pn,k

)1−ηk
wet

get the expression for trade shares in the text. Finally, the expression for the price index

in the text is obtained by combining P 1−ηk
n,k =

∑
i P

1−ηk
ni,k with the result above for Pni,k,

with µ̄Mel
k ≡

(
σk−1
σk

)σk
θk

 1
θk

(
σk
σ̃k

)1− θk
σk−1

θk−(σk−1)


1
θk

.

C. Existence and Uniqueness

C.1. Proof of Proposition 1

Proof of Lemma 1. Here we prove that functionF (·) defined in (7) is strictly convex on

Γ. The uniqueness of solution of the minimization problem minx∈Γ F (x) then follows

from the fact that Γ is a convex set, and a strictly convex function can have at most one

global minimum on a convex set.

If 0 < α < 1, then for any n function
∑

i anix
α
i is a strictly concave function. And

since the logarithm is a strictly concave function, F (·) is strictly convex.

If α = 1, then we need to make sure that for any two vectors x 6= y we cannot

have that
∑

i anixi =
∑

i aniyi for all n. Otherwise, we would have F (γx + (1− γ)y) =

γF (x) + (1− γ)F (y) for any γ ∈ [0, 1] and strict convexity would be violated. Assump-

tion 1 guarantees that matrix A = (ani) is non-singular. Hence, for any x 6= y we have
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∑
i anixi 6=

∑
i aniyi for at least one n. Hence, in case of α = 1, F (·) is also strictly convex

under Assumption 1. Note that without Assumption 1 function F (·) is just convex, but

not necessarily strictly convex. �

Proof of Lemma 2. Suppose, without loss of generality, that x∗1 = 0. Since
∑

n x
∗
n =∑

n bn > 0, we can also suppose without loss of generality that x∗2 6= 0. Consider the

vector x(ε) = (ε, x∗2 − ε, x∗3, . . . , x∗N ), where ε ∈ [0, x∗2]. Clearly, x(ε) ∈ Γ. Define

F̃ (ε) ≡ F (x (ε)) = α
∑
n

x∗n −
∑
n

bn ln

(
an1ε

α + an2(x∗2 − ε)α +

N∑
i=2

ani (x∗i )
α

)
.

We now show that F̃ (ε) < F̃ (0) for small enough ε > 0. We have

∂ (aj1ε
α + aj2(x∗2 − ε)α)

∂ε
= αaj1ε

α−1 − αaj2(x∗2 − ε)α−1,

which, given α ∈ (0, 1), is positive for small enough ε. This implies that aj1εα + aj2(x∗2−

ε)α +
∑N

i=2 aji [x∗i ]
α > aj2 [x∗2]α +

∑N
i=2 ai [x∗i ]

α for small enough ε. Since ln(·) is a strictly

increasing function, we then get that F̃ (ε) < F̃ (0) for small enough ε, a contradiction.

This implies that x∗ cannot be a global minimum of F (·) on Γ. Hence, in the case of

α ∈ (0, 1) we must have x∗i > 0 for all i. �

Proof of Lemma 3. Let us start with the simpler case of α = 1. We can take the set

D ≡
{
x ∈ RN |

∑
i anixi > 0 for all n

}
as the domain of F (·) and use Γ as the constraint

set. Clearly, Γ ⊂ D ∩
{
x ∈ RN |

∑
i xi =

∑
i bi
}

and F (·) is differentiable on D for α = 1.

Consider the minimization problem

min
x∈D

F (x)

s.t.

xi ≥ 0, i = 1, . . . , N ;∑
i

xi =
∑
i

bi.

(17)
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Its first-order conditions, after some manipulations, can be written as

xi ≥ 0,
∂F (x)

∂xi
≥ 0, xi

∂F (x)

∂xi
= 0, i = 1, . . . , N,∑

i

xi =
∑
i

bi.

These conditions are also sufficient, because F (·) is convex and the set that satisfies the

constraints of the minimization problem is a convex set. Then, since Gi (x) =
∂F (x)

∂xi
,

we get that any solution of the minimization problem (17) is also a solution of the NCP

in (6) and vice versa.

Let us now turn to the case with 0 < α < 1. Let x∗ be a minimum of F (·) on Γ.

By Lemma 2, x∗i > 0 for all i. Let δ > 0 be some number such that δ ≤ x∗i for all i =

1, . . . , N . Define the domain of F by D̃ ≡
{
x ∈ RN |xi > δ/2, i = 1, . . . , N

}
. Consider

the minimization problem:

min
x∈D̃

F (x)

s.t.∑
i

xi =
∑
i

bi.

(18)

Since D̃ ∩
{
x ∈ RN |

∑
i xi =

∑
i bi
}
⊂ Γ, if x∗ minimizes F on Γ, it also solves the min-

imization problem (18). Since x∗i > δ/2 for all i, the first-order conditions for (18) are

given by
∂F (x∗)
∂xi

= 0, i = 1, . . . , N, and
∑
i

x∗i =
∑
i

bi. (19)

Hence, x∗ solves NCP in (6). Conversely, if x∗ solves NCP, then x∗i > 0 for all i because

the condition Gi (x∗) ≥ 0 cannot be satisfied for x∗i = 0 if 0 < α < 1. Hence, x∗ satisfies

conditions (19), which are the first order conditions for an interior solution of (18) with

an appropriately chosen δ > 0. Since these first-order conditions are also sufficient,

x∗ solves (18). Now, suppose by contradiction that the minimum of F (·) on Γ is some

x∗∗ 6= x∗. Then, by Lemma 2, x∗∗i > 0 for all i. Therefore we can extend the open set on

which F (·) is differentiable to include both x∗ and x∗∗. Then both x∗ and x∗∗ satisfy the

first-order conditions (19), which gives a contradiction given that F (·) is strictly convex

and the constraint set is convex. Hence, x∗ is the minimum of F (·) on Γ. �
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Proof of Lemma 4. Let us formally bring argument α into the notation of function F

defined in (7), i.e., consider the function F (x;α). Lemma 1 establishes that under As-

sumption 1 the solution to the optimization problem minx∈Γ F (x;α) defines a function

x : (0, 1]→ RN+ \{0}. Clearly, F (x;α) is continuous for all x ∈ RN+ \{0} and α ∈ (0, 1]. Γ

is a compact set which is the same for all α ∈ (0, 1]. Thus, all conditions for Theorem of

the Maximum (Theorem 3.6) from Stokey, Lucas and Prescott (1989) are statisfied, and

x(α) is continuous for all α ∈ (0, 1]. �

C.2. Proof of Proposition 2

Proof of Lemmas 5 and 6. The case with αk = 0 is trivial because labor allocations are

explicitly obtained from the goods market clearing conditions Li,kGi,k (w,Lk) = 0, and

the resulting expressions for Li,k(w) are obviously continuous. Below we focus on the

case with αk ∈ (0, 1].

Define a multi-valued correspondence Γk : RN++ → RN+ \ {0} by

Γk (w) =

{
Lk ∈ RN |Li,k ≥ 0,

∑
i

wiLi,k =
∑
i

βi,kwiL̄i

}
.

Define function Fk :
(
RN+ \ {0}

)
× RN++ → R by

Fk(Lk;w) = αk
∑
n

wnLn,k −
∑
n

βn,kwnL̄n ln

(∑
i

Si,kL
αk
i,k (wiτni,k)

−εk
)
.

Denote the set of labor allocations at which Fk(Lk;w) achieves its minimum on Γk(w)

by Lk(w) ≡ arg minLk∈Γk(w) Fk(Lk;w). It is straightforward to show that Γk(w) is both

lower hemi-continuous and upper hemi-continuous for all w ∈ RN++ (see the corre-

sponding definitions in Stokey, Lucas and Prescott, 1989). Hence, Γk(w) is continuous

for all w ∈ RN++. Clearly, Γk (w) is also compact-valued for all w ∈ RN++. Function

Fk (Lk;w) is continuous for all Lk ∈ RN+ \ {0} and w ∈ RN++. Thus, all conditions for

Theorem 3.6 (Theorem of the Maximum) from Stokey, Lucas and Prescott (1989) are

satisfied, and the correspondence Lk : RN++ → RN+ \ {0} is nonempty and upper hemi-

continuous.

Lemma 1 establishes that under conditions (a) or (b) Fk(Lk;w) is strictly convex

in Lk and, hence, Lk(w) is a singleton. In this case upper hemi-continuity of Lk(w)
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
0 . . . 0 L1,K∗+1 . . . L1,K
...

...
...

...
0 . . . 0 LN−1,K∗+1 . . . LN−1,K

LN,1 . . . LN,K∗ LN,K∗+1 . . . LN,K


Case (a)



L̄1
. . . 0

0
. . .

L̄K∗
0 . . . 0 L̄K∗+1
...

...
...

0 . . . 0 L̄N


Case (b)


L̄1 0 0 . . . 0

. . .
...

...
0 L̄N−1 0 . . . 0
0 . . . 0 LN,N . . . LN,K∗


Case (c)

Figure 5: Labor allocation patterns in Proposition 2

simply means continuity. Lemma 3 implies that all global minima of Fk(·;w) on Γk(w)

are solutions to problem (3). Therefore, under conditions (a) or (b) the solution to (3)

defines a continuous function Lk(w) from wages to labor allocations.

If αk = 1 and Assumption 1 does not hold, function Fk(Lk;w) is convex in Lk, but

not necessarily strictly convex. Then, since Γk(w) is a convex set, Lk(w) is also con-

vex. Again, Lemma 3 implies that Lk(w) consists of all solutions to problem (3). So,

in this case, solution to (3) determines a correspondence Lk(w) between wages and

equilibrium labor allocations which is non-empty, convex-valued, and upper hemi-

continuous. �

Proof of Proposition 2. Without loss of generality assume thatαk > 1 for k = 1, . . . ,K∗

and 0 ≤ αk ≤ 1 for k = K∗ + 1, . . . ,K and consider the following three cases: (a)

0 ≤ K∗ < K; (b) K∗ = K and K < N ; (c) K∗ = K and K ≥ N . In what follows, re-

fer to Figure 5 for an illustration of the patterns of labor allocations that we choose for

the cases (a)-(c). In this figure, rows of matrices correspond to countries and columns

correspond to industries. In the next paragraph we formally define these patterns.

If we are in case (a), then for i = 1, . . . , N − 1 and k = 1, . . . ,K∗ set Li,k = 0. In this
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case industries k = 1, . . . ,K∗ are arbitrary chosen to be supplied by country N only.

Next, if we are in case (b), then for i = 1, . . . ,K∗ and k = 1, . . . ,K∗ set Li,k = 0 if i 6= k;

and for i = K∗ + 1, . . . , N and k = 1, . . . ,K∗ − 1 set Li,k = 0. In this case we arbitrary

assign each country with index i = 1, . . . ,K∗ − 1 to be the only supplier of the industry

with the corresponding index k = 1, . . . ,K∗ − 1, while the remaining countries allocate

all their labor to industry K∗. Finally, if we are in case (c), then for i = 1, . . . , N − 1 and

k = 1, . . . ,K set Li,k = 0 if i 6= k; and for k = 1, . . . , N − 1 set LN,k = 0. In this case,

similarly to case (b), each country with index i = 1, . . . , N − 1 is the only supplier of the

industry with the corresponding index k = 1, . . . , N − 1, while the remaining industries

are all supplied by country N only.

In cases (b) and (c), when some country i allocates all its labor to only one industry,

we label the corresponding entries of the labor allocation matrices in Figure 5 by L̄i. At

the same time, in the formal definitions of the labor allocation patterns above we do not

explicitly set labor allocations in the corresponding cases to the full labor endowments.

The reason is that we are going to use the two-step definition of equilibrium from the

main text to prove existence. In the first step we fix wages and derive equilibrium labor

allocations, and in the second step we find wages that clear labor markets. So, labeling

of non-zero entries in Figure 5 shall be understood as equilibrium outcomes rather

than predetermined allocations.

It is easy to verify that for all country-industry pairs (i, k) for which we assigned

Li,k = 0 the corresponding complementary slackness conditions (3) are satisfied for

any positive vector of wages. This is because in all these cases we have αk > 1. For all

other cases we can either explicitly (for αk = 0 or αk > 1) or implicitly (for 0 < αk ≤ 1)

solve (3) to find (first-step) equilibrium labor allocations.

Importantly for what follows, the allocations described in cases (a)-(c) imply that

for any country i we have the following three mutually exclusive possibilities:

1. There is some industry k for which country i is the only supplier. In this case

country i’s equilibrium labor allocation in industry k is given by

Li,k (w) =
1

wi

∑
n

βn,kwnL̄n. (20)

2. Country i allocates all its labor to some industry k that is supplied by multiple
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countries each of which allocates all its labor to this industry — this happens in

case (b) above if i ≥ K∗. The equilibrium labor allocation in industry k is given by

Li,k (w) =
∑
n

Si,K∗ [τni,K∗ ]
−εK∗ L̄αK∗i w

−εK∗−1
i∑

l≥K∗
Sl,K∗ [τnl,K∗ ]

−εK∗ L̄αK∗l w
−εK∗
l

βn,K∗wnL̄n, (21)

while Li,k′(w) = 0 for all k′ 6= k.

3. Country i allocates all its labor to industries with αk ≤ 1. In this case country i’s

equilibrium labor allocations satisfy (3), which defines a functionLi,k(w) ifαk < 1

and a correspondence Li,k(w) if αk = 1.

Let

Zi(w) ≡

{∑
k

Li,k − L̄i

∣∣∣∣∣Li,k = Li,k(w) if αk 6= 1 and Li,k ∈ Li,k(w) if αk = 1

}

be the excess labor demand correspondence in country i, and let

Z(w) ≡ (Z1(w), . . . ,ZN (w)) .

We are going to use Theorem 8 from Debreu (1982) to show that there exists a positive

vector of wages w such that 0 ∈ Z (w). For that we need to verify that Z satisfies the

following properties: (i) Z is homogeneous of degree zero;38 (ii) Z is convex-valued;

(iii) Z is bounded below; (iv)Z is upper hemi-continuous; (v) (Walras’ Law)
∑
wiZi = 0

for any w ∈ RN++ and any (Z1, . . . , ZN ) ∈ Z(w); (vi) (Boundary Condition) if
{
wt
}∞
t=1

is

a wage sequence such that wt → w as t → ∞, where w 6= 0 is a finite vector of wages

and wi = 0 for some i, then for any sequence
(
Zt1, . . . , Z

t
N

)
∈ Z(wt) for t = 1, 2, . . . , we

have max
{
Zt1, . . . , Z

t
N

}
→∞ as t→∞.

It is immediate to see that Z(w) is homogeneous of degree zero, that Walras’ Law

is satisfied for any positive w, and that Zi > −L̄i for any (Z1, . . . , ZN ) ∈ Z(w) and

all positive w. The property that Z(w) is convex-valued follows from the fact that

Z(w) consists of the sum of functions Li,k(w) and correspondences Li,k(w) which are

38Homogeneity of degree zero is not explicitly mentioned in Theorem 8 in Debreu (1982). Instead, the
excess demand correspondence is assumed to be defined on a simplex of prices. For our purposes this is
the same as assuming homogeneity of degree zero.
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convex-valued by virtue of Lemma 6. Upper hemi-continuity of Z(w) follows from up-

per hemi-continuity of Li,k(w) established in Lemma 6 and from the fact Li,k(w) are

given by (20), or by (21), or by the solution to (3), which is continuous by Lemma 5.

The only non-trivial condition to check is the boundary condition (vi). Consider

any wage sequence from this condition. Let index j be such that wage wtj converges to

0 weakly “faster” than other wages. Formally, index j is such that the limit lim
t→∞

wtj
/
wtl is

finite for all l. Such index always exists because there is a finite number of indices.

Consider the three possibilities above. Under the first possibility, country j is the

only supplier of some industry k, therefore by expression (20) we have Lj,k
[
wt
]

=∑
n βn,k

[
wtn/w

t
j

]
L̄n. This converges to ∞ as t → ∞, and so max

{
Zt1, . . . , Z

t
N

}
→ ∞

for any sequence
(
Zt1, . . . , Z

t
N

)
∈ Z(wt) for t = 1, 2, . . . .

Under the second possibility, country j’s excess labor demand function is given by

Zj (w) =
∑
n

Sj,K∗ [τnj,K∗ ]
−εK∗ L̄αK∗j (wtj)

−1∑
l≥K∗

Sl,K∗ [τnl,K∗ ]
−εK∗ L̄αK∗l

[
wtj/w

t
l

]εK∗ βn,K∗wtnL̄n − L̄i.
The denominator of any term in the above sum converges to a finite positive number

as t → ∞. The numerator converges either to a finite positive number or to infinity.

Moreover, since for at least one index n wage wtn converges to a positive number and

wtj converges to 0, we have that for at least one index n the numerator of the corre-

sponding term in the above sum converges to∞. Hence, the whole sum converges to

∞. Therefore, again, the boundary condition is satisfied.

Finally, under the third possibility country j supplies all its labor to industries with

αk ≤ 1. Pick any such industry k. Equilibrium labor allocations to industry k in all

countries satisfy (3) (see case (a) in Figure 5). Let us use the general notation Li,k(w)

for all such labor allocations (if αk = 1, then Li,k(w) is a singleton). If there is some

country i with the corresponding sequence of sets Li,k(wt) such that any sequence

Lti,k ∈ Li,k(wt) converges to∞ as t → ∞, then the boundary condition is satisfied. Let

us show that there always exists such a country by supposing the contrary. That is, sup-

pose that for any country i there exists a sequence Lti,k ∈ Li,k(wt) converging to a finite

number as t → ∞. That means that there exists a sequence
(
Lt1,k, . . . , L

t
N,k

)
∈ Lk(w

t)

converging to a finite vector as t → ∞. Consider this sequence. Let us focus again
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on the country j for which the wage converges to 0 weakly “faster” than for any other

country. For any t, Ltj,k satisfies (3) and, in particular, Ltj,k satisfies the inequality

wtj ≥
∑
n

Sj,k

[
Ltj,k

]αk−1 [
wtjτnj,k

]−εk∑
l

Sl,k
[
Ltl,k

]αk [wtlτnl,k]−εk βn,kwtnL̄n.
This inequality can be equivalently rewritten as

wtj ≥
N∑
n=1

Sj,k

[
Ltj,k

]αk−1
τ−εknj,k∑

l

Sl,k
[
Ltl,k

]αk τ−εknl,k

[
wtj
/
wtl
]εkwtnL̄n. (22)

The denominator of any term in the above summation (22) converges to a finite num-

ber (which can be either positive or zero). The numerator of any term in the summa-

tion (22) converges to either a finite positive number or to infinity. Also, there exists at

least one indexn such that lim
t→∞

wtn > 0. Then, for this indexn the corresponding term in

the summation (22) converges to either a finite positive number or to∞. This, in turn,

implies that the whole sum in (22) converges to either a finite positive number or to∞.

At the same time, the left-hand side of inequality (22) converges to 0. A contradiction.

�

C.3. Proof of Proposition 3

If αk > 1 for some k then in the proof of Proposition 2 K∗ > 0. This implies that there

are different allocations that we can assign (i.e., one for each country), and since there is

an equilibrium for each one, this immediately establishes that there are multiple equi-

libria. �

C.4. Proof of Proposition 4

This proof proceeds by showing thatZ(w) satisfies the gross substitutes property (GSP).

Uniqueness of wages then follows from Proposition 17.F.3 from MWG.

Consider any particular industry k. Let us separately analyze the two possibilities

0 ≤ αk < 1 and αk = 1.

If 0 ≤ αk < 1, then for any i we have that Li,k(w) > 0 for any wage vector w ∈ RN++,
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and Li,k(w) solves:

wiLi,k(w) =
∑
n

λni,k(w,Lk(w))βn,kwnL̄n.

By differentiating both sides of this expression w.r.t. wages, we can get a linear system of

equations which determines the effect of wages on labor allocations. Let us introduce

additional notation to write in matrix form this effect. Denote xij,k ≡
d lnLi,k(w)

d lnwj
, qi,k ≡

wiLi,k(w), and bi,k ≡ βi,kwiL̄i. Let Bk denote the diagonal matrix with elements bi,k

along the diagonal,Qk the diagonal matrix with elements qi,k along the diagonal, Λk the

matrix of sector level expenditure shares λij,k, andXk the matrix of partials xij,k. Finally,

let Uk ≡
(
(1− αk)Qk + αkΛ

T
kBkΛk

)
and Vk ≡

(
ΛTkBk + εkΛ

T
kBkΛk − (1 + εk)Qk

)
. In

this notation the effect of wages on labor allocations is obtained from the system:

UkXk = Vk.

It straightforward to check that matrix Uk is a positive definite matrix with all posi-

tive elements, and matrix Vk has negative diagonal and positive off-diagonal elements.

Since Uk is positive definite, the inverse exists and its determinant is positive. More-

over, U−1
k = 1

det(Uk)C
T
k , where CTk is the transpose of the matrix of cofactors Ck of Uk.

Since all the elements of Uk are positive, then for N = 2, Ck is a 2× 2 matrix consisting

of positive diagonal elements and negative off-diagonal elements.39 Therefore,U−1
k has

this property as well. One can then readily verify that U−1
k Vk is a matrix with the same

properties as Vk — it has negative diagonal and positive off diagonal elements. Thus

the Jacobian matrix of wages effects on labor allocations in industry k with 0 ≤ αk < 1

satisfies the GSP.

If αk = 1, then Li,k(w) can be equal to 0 for some i, and we cannot establish dif-

ferentiability of labor allocations in that region. We are going to check directly what

happens to labor allocations as wages change. To that end, assume without loss of

generality that w′ and w′′ are such that w′′1 > w′1 and w′′2 = w′2 = 1. Let us show that

L2,k(w
′′) ≥ L2,k(w

′) for all k and there is some industry k̃ such thatL2,k̃(w
′′) > L2,k̃(w

′).

In general, given wage w′ there are three cases: (a) L1,k(w
′) = 0 and L2,k(w

′) =

β1,kw
′
1L̄1 + β2,kL̄2; (b) Li,k(w′) > 0 for i = 1, 2; (c) L2,k(w

′) = 0 and

39This is no longer true with N > 2.



60 KUCHERYAVYY-LYN-RODRı́GUEZ-CLARE

L1,k(w
′) =

1

w′1

(
β1,kw

′
1L̄1 + β2,kL̄2

)
.

Let us consider these different cases.

Case (a). In this case we have G1,k(w
′) ≥ 0 and G1,k(w

′) simplifies to:

G1,k(w
′) = w1 −

S1,k [w′1]−εk

S2,kL2,k(w′)τ
−εk
12,k

β1,kw
′
1L̄1 −

S1,k (w′1τ21,k)
−εk

S2,kL2,k(w′)
β2,kL̄2.

After substituting L2,k(w
′) = β1,kw

′
1L̄1 + β2,kL̄2 into the above expression for G1,k(w

′),

and dividing both sides of this expression by w′1, we get:

G1,k(w
′)

w′1
= 1−

S1,k

S2,kτ
−εk
12,k

·
[w′1]−εk β1,kL̄1

β1,kw
′
1L̄1 + β2,kL̄2

−
S1,kτ

−εk
21,k

S2,k
·

[w′1]−1−εk β2,kL̄2

β1,kw
′
1L̄1 + β2,kL̄2

.

Clearly, the right-hand side of this expression is increasing inw′1. Hence,G1,k(w
′′)/w′′1 >

G1,k(w
′)/w′1 ≥ 0, which in turn implies that G1,k(w

′′) > 0. Therefore, L1,k(w
′′) = 0 and

L2,k(w
′′) = β1,kw

′′
1 L̄1 + β2,kL̄2 solve the complementary slackness problem (3). In other

words, we still remain in case (a) after we increase the wage of the country 1 from w′1

to w′′1 . Clearly, in this case L2,k(·) is a strictly increasing function of the wage of the first

country, L2,k(w
′′) > L2,k(w

′).

Case (b). We know that, as long as we are in case (b), L1,k(·) is a decreasing function

and L2,k(·) is an increasing function of w1. Therefore, starting in case (b) with w′ and

gradually increasing w1 from w′1 to w′′1 , we either remain in case (b) or switch to case (a)

at some point. The above argument for case (a) implies that, once we switch to case (a),

we will remain in case (a) as we keep increasing w1. Thus, for w′′ we can either be in

case (a) or in case (b), but not in case (c), and since in both cases (a) and (b) L2,k(·) is a

strictly increasing function of w1, we must have L2,k(w
′′) > L2,k(w

′).

Case (c). In this case, we can be in any of the cases (a)-(c) for w′′. If we are in

cases (a) or (b) for w′′, then L2,k(w
′′) > L2,k(w

′) = 0. If we are in case (c) for w′′, then

L2,k(w
′′) = L2,k(w

′) = 0, but there must exist some industry k̃, for which we are in case

(a) or (b) for w′ (regardless of the value of αk̃ in this industry). Applying the arguments

above, for any such industry we have L2,k̃(w
′′) > L2,k̃(w

′).

Since the effect of changes in wages on Z(w) consists of the sum (across industries)

of effects on industry-level labor allocations, we conclude that Z(w) satisfies the GSP.

�
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C.5. Proof of Proposition 5

In this proof we will use matrices Bk, Qk, Λk, Uk, and Vk defined in the proof of Propo-

sition 4 in Appendix C.4. In addition to that, let Lk be a diagonal matrix with elements

Li,k along the diagonal; W be a diagonal matrix with elements wi along the diago-

nal; DZ(w) be the Jacobian matrix of the excess demand system, Z(w), with elements

∂Zi(w)/∂wj ; and DLk (w) be the Jacobian matrix of industry-level labor allocations

with elements ∂Li,k (w) /∂wj .

We have

DZ(w) =
∑
k

DLk (w) =
∑
k

LkU
−1
k VkW

−1.

Matrix Vk has the following properties: (i) entries in each row add up to 0; (ii) diago-

nal entries are negative; (iii) off-diagonal entries are positive. For all industries k with

αk = 0 matrixUk reduces to diagonal matrixQk with positive diagonal elements. There-

fore, we can immediately conclude that for all such industries DLk (w) has properties

(i)-(iii) as well. The rest of this appendix section is devoted to proving that for all in-

dustries k with 0 < αk < 1 matrix DLk (w) also has properties (i)-(iii) under free trade.

Since summation of matrices with properties (i)-(iii) again gives a matrix with these

properties, the whole Jacobian of the excess demand system, DZ(w), has properties

(i)-(iii) under free trade. This means that the excess demand system Z(w) has the gross

substitutes property. Hence, there is at most one normalized vector of wages such that

Z(w) = 0.

Consider any industry k with 0 < αk < 1. For brevity of notation we drop the indus-

try index k in the rest of this proof. According to Proposition 1 all industry-level labor

allocations are interior, and so, Li > 0, λii > 0, qi > 0 for all i. We start with three

lemmas which apply to the general case of costly trade.

Lemma 7. Let µ1, . . . , µN be eigenvalues of matrix Q−1ΛTBΛ. Then µi is real and 0 ≤

µi ≤ 1 for each i.

Proof. Consider matrix Q−1/2ΛTBΛQ−1/2, and let µ be any eigenvalue of this matrix

with the corresponding eigenvector v. By definition of an eigenvalue,

Q−1/2ΛTBΛQ−1/2υ = µυ. This is equivalent to Q−1ΛTBΛ
(
Q−1/2υ

)
= µ

(
Q−1/2υ

)
.
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Hence, µ is an eigenvalue of Q−1ΛTBΛ with the corresponding eigenvector Q−1/2υ.

Therefore, matrices Q−1ΛTBΛ and Q−1/2ΛTBΛQ−1/2 have the same eigenvalues, and

so µ1, . . . , µN are eigenvalues of Q−1/2ΛTBΛQ−1/2.

Clearly, matrixQ−1/2ΛTBΛQ−1/2 is positive semi-definite. Hence, all its eigenvalues

are real and nonnegative, i.e., µi is real and µi ≥ 0 for each i. Next, matrix Q−1ΛTBΛ is

a positive stochastic matrix (its entries in each row add up to 1). Therefore, the Perron-

Frobenius theorem implies that 1 is its eigenvalue with algebraic multiplicity one and

|µi| < 1 for any |µi| 6= 1. Since µi ≥ 0 for all i, we have the statement of the lemma.

Lemma 8. limt→∞ αt
(
IN −Q−1ΛTBΛ

)t
= 0.

Proof. Eigenvalues of matrix IN − Q−1ΛTBΛ are 1 − µ1, . . . , 1 − µN , where µ1, . . . , µN

are eigenvalues of Q−1ΛTBΛ. Lemma 7 implies that 0 ≤ 1 − µi ≤ 1 for all i. Then,

since eigenvalues of matrix α
(
IN −Q−1ΛTBΛ

)
are α (1− µ1) , . . . , α (1− µ1), we have

that ρ
(
α
[
IN −Q−1ΛTBΛ

])
< 1, where ρ (·) is the spectral radius of a matrix. Therefore,

αt
(
IN −Q−1ΛTBΛ

)t → 0 as t → ∞ (see, for example, Theorem 5.6.12 in Horn and

Johnson, 2013).

Lemma 9. U−1V = εα−1IN −
∑∞

t=0 α
t
(
IN −Q−1ΛTBΛ

)t [(
1 + εα−1

)
IN −Q−1ΛTB

]
.

Proof. Consider U−1:

U−1 =
[
(1− α)Q+ αΛTBΛ

]−1
=
[
(1− α) IN + αQ−1ΛTBΛ

]−1
Q−1

=
[
IN − α

(
IN −Q−1ΛTBΛ

)]−1
Q−1.

Lemma 8 implies that we can write[
IN − α

(
IN −Q−1ΛTBΛ

)]−1
=
∞∑
t=0

αt
(
IN −Q−1ΛTBΛ

)t
(see, for example, Corollary 5.6.15 in Horn and Johnson, 2013). Then

U−1V = −
∞∑
t=0

αt
(
IN −Q−1ΛTBΛ

)t [
(1 + ε) IN −Q−1ΛTB − εQ−1ΛTBΛ

]
= −ε

∞∑
t=0

αt
(
IN −Q−1ΛTBΛ

)t+1 −
∞∑
t=0

αt
(
IN −Q−1ΛTBΛ

)t [
IN −Q−1ΛTB

]
= εα−1IN −

∞∑
t=0

αt
(
IN −Q−1ΛTBΛ

)t [(
1 + εα−1

)
IN −Q−1ΛTB

]
.
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Let us now consider the case of frictionless trade. In this case the matrix of trade

shares, Λ, has the same entries in each column:

Λ ≡

λ11 . . . λNN
...

...
λ11 . . . λNN

 .

So, it can be represented (with a slight abuse of notation) as OΛ where O is an N × N

matrix of ones (i.e., O = ι · ιT with ιT ≡ (1, . . . , 1)) and

Λ ≡

λ1 0
. . .

0 λN

 .

Then, in this notation

U = (1− α)Q+ αΛOBOΛ and V = ΛOB + εΛOBOΛ− (1 + ε)Q.

Denote b ≡
∑

n bn and observe thatOBO = bO. Also, sinceLi satisfies the goods market

clearing condition, wiLi =
∑

n λibn = λi
∑

n bn = bλi. Then, since in our notation

qii = wiLi, we have that Q = WL = bΛ. These equalities together with Lemma 9 allow

us to write:

U−1V = εα−1IN −
∞∑
t=0

αt
(
IN −Q−1ΛOBOΛ

)t [(
1 + εα−1

)
IN −Q−1ΛOB

]
= εα−1IN −

∞∑
t=0

αt (IN −OΛ)t
[(

1 + εα−1
)
IN − b−1OB

]
.

Using the fact that
∑

i λi = 1 and, hence, OΛO = O, we get:

(IN −OΛ)
[(

1 + εα−1
k

)
IN − b−1OB

]
=
(
1 + εα−1

)
IN − b−1OB

−
(
1 + εα−1

)
OΛ + b−1OΛOB

=
(
1 + εα−1

)
(IN −OΛ) ,
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and

(IN −OΛ) (IN −OΛ) = IN −OΛ−OΛ +OΛOΛ = IN −OΛ.

Therefore,

U−1V = εα−1IN −
[(

1 + εα−1
)
IN − b−1OB

]
−
(
1 + εα−1

) ∞∑
t=1

αt (IN −OΛ)t

= −
(
IN − b−1OB

)
−
(
1 + εα−1

)
(IN −OΛ)

∞∑
t=1

αt

=
(
b−1OB − IN

)
+
α+ ε

1− α
(OΛ− IN ) .

Observe that both matrices
(
b−1OB − IN

)
and (OΛ− IN ) have properties (i)-(iii) listed

at the beginning of this appendix section. Hence, matrix U−1V has properties (i)-(iii)

as well. This, in turn, implies that matrix ΛU−1VW−1 also has properties (i)-(iii). This

concludes our proof. �

C.6. Applying Uniqueness Results in Allen, Arkolakis and Li (2015)

With a slight change of notation, the equilibrium system in {wi}, {Lik}, {Pik} can be

written as

wiLik =
∑
n

νnikw
−εk
i Lαkik P

εk
nkβnkwnL̄n (23)

P−εknk =
∑
j

νnjkw
−εk
j Lαkjk L̄i (24)

L̄i =
∑
k

Lik (25)

Let κ > 1 be some parameter and let α̃k ≡ εk+καk
κ−1 . Changing variables to wik =

wi
(
Lik/L̄i

)1/κ and yi = wi the system (23)- (25) now becomes

y1+εk
i (wik/yi)

κ L̄i =
∑
n

νnik
(
(wik/yi)

κ L̄i
)− εk

κ
+α̃k(κ−1

κ
)
P εknkβnkynL̄n (26)
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P−εknk =
∑
j

νnjky
−εk
j

(
(wjk/yj)

κ L̄j
)− εk

κ
+α̃k(κ−1

κ
)
yκi =

∑
k

wκik (27)

yκi =
∑
k

wκik (28)

This is a system in {yi}, {wik}, {Pik}. It is clear that the system (23)-(25) has a unique

solution if and only if the system (26)-(28) with κ > 1 and α̃k = εk+καk
κ−1 has a unique

solution. So we can do the analysis of uniqueness of our equilibrium system with the

transformed system (26)-(28). Also note that this transformed system corresponds to

the equilibrium system of equations for an economy where labor is heterogeneous as

in a Roy-Frechet model as in Galle et al. (2015), with scale elasticity α̃k.

If we assume that α̃k = α̃ and εk = ε, then we can map the transformed system (26)-

(28) into the system in Equation (1) in Allen, Arkolakis and Li (2015) (henceforth AAL)

and explore if their Theorem 1 can be invoked to establish uniqueness. Letting x1
is ≡

wis, x2
is ≡ Pis, and x3

is ≡ yi, the system can be rewritten as

(
x1
is

)1+ε+(1−α̃)(κ−1) (
x3
is

)−(1−α̃)(κ−1)
=
∑
jk

K1
is,jk

(
x2
jk

)ε
x3
jk, (29)

(
x2
is

)−ε
=
∑
jk

K2
is,jk

(
x1
jk

)−ε+α̃(κ−1) (
x3
jk

)−α̃(κ−1)
, (30)

(
x3
is

)κ
=
∑
jk

K3
is,jk

(
x1
jk

)κ
. (31)

This maps into Equation (1) in AAL with each “location” being an (i, s) pair. Following

AAL’s notation, we have

Γ =

1 + ε+ (1− α̃) (κ− 1) 0 − (1− α̃) (κ− 1)

0 −ε 0

0 0 κ


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and

B =

 0 ε 1

−ε+ α̃ (κ− 1) 0 −α̃ (κ− 1)

κ 0 0

 .

Assuming that α̃ is in between 0 and 1 and that κ > 1 + ε/α̃ then

A ≡
∣∣BΓ−1

∣∣ =


0 1

1

κ
α̃ (κ− 1)− ε

(1− α̃) (κ− 1) + ε+ 1
0 κ−1

κ (1− α̃)

[
α̃

1−α̃ −
α̃ (κ− 1)− ε

(1− α̃) (κ− 1) + ε+ 1

]
κ

(1− α̃) (κ− 1) + ε+ 1
0

(1− α̃) (κ− 1)

(1− α̃) (κ− 1) + ε+ 1


In simulations we see that the spectral radius ρ(A) is always higher than one, which

implies that we cannot invoke AAL’s Theorem 1 to establish uniqueness.

There are parameter restrictions under which we can show that ρ(A) ≤ 1. In par-

ticular, in simulations we always find that if κ ≤ 1 + ε/α̃ then ρ(A) ≤ 1. Unfortunately,

however, the case κ ≤ 1 + ε/α̃ corresponds to one in which α = − ε
κ + α̃(κ−1

κ ) ≤ 0, so

this does not correspond to our system with scale economies.

Finally, it is interesting to explore how the AAL approach can be used to establish

uniqueness for labor allocations given wages. That would correspond to the case in

which we take yi as given and ignore equation (28) in the system (26)- (28). Then the

system can be written as

wκik =
∑
n

µnikw
−εk+α̃k(κ−1)
ik (Pnk)

εk

and

(Pnk)
−εk ≡

∑
j

ηnjkw
−εk+α̃k(κ−1)
jk

for some positive parameters µnik and ηnjk. With εk = ε and α̃k = α̃, this maps into

Equation (1) in AAL as

(
x1
ik

)1+ε+(1−α̃)(κ−1)
=
∑
ns

K1
ik,ns

(
x2
ns

)ε
and (

x2
ik

)−ε
=
∑
ns

K2
ik,ns

(
x1
ns

)−ε+α̃(κ−1)
.
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This entails

Γ =

(
1 + ε+ (1− α̃) (κ− 1) 0

0 −ε

)
and

B =

(
0 ε

−ε+ α̃(κ− 1) 0

)
.

For α̃ ∈ [0, 1] and κ > 1 + ε/α̃ we have

A ≡
∣∣BΓ−1

∣∣ =

(
0 1

−ε+α̃(κ−1)
1+ε+(1−α̃)(κ−1) 0

)
.

We have ρ(A) =
(

−ε+α̃(κ−1)
1+ε+(1−α̃)(κ−1)

)1/2
, which is lower than one if 1+2ε+(1− 2α̃) (κ− 1) >

0. If α̃ ≤ 1/2 then AAL’s Theorem 1 implies uniqueness for all κ > 1 + ε/α̃. If this latter

condition is not satisfied then for α̃ ∈ [0, 1] and κ < 1 + ε/α̃ we have

A =

(
0 1

ε−α̃(κ−1)
1+ε+(1−α̃)(κ−1) 0

)
.

The spectral radius of this is
(

ε−α̃(κ−1)
1+ε+(1−α̃)(κ−1)

)1/2
. This is lower than one if ε− α̃(κ−1) <

1 + ε+ (1− α̃) (κ− 1) which is always true. We conclude that if 0 ≤ α̃ ≤ 1/2 (and κ > 1)

then there is uniqueness. This translates into the condition that αk = α < 1/2 for all

k for a unique labor allocation given wages in the original model with homogeneous

labor. This condition is more stringent condition than the one in Proposition 1.

D. Gains from Trade

D.1. Proof of Proposition 6

It is sufficient to show that for any industry k the price index is lower with trade. We

need to consider two cases: (a) αk ∈ [0, 1) and (b) αk = 1. Suppressing subindex k, first

note that for case (a) we have

∑
n

λni(L)βnwnL̄n = wiLi,
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where

λni(L) ≡ SiL
α
i (wiτni)

−ε∑
l SlL

α
l (wlτnl)−ε

.

The expression for the price index, Pn = µn (
∑

l SlL
α
l (wlτnl)

−ε)−1/ε, implies

∑
n

SiL
α
i (wiτni)

−εµ−εn P εnβnwnL̄n = wiLi,

and
wi
Pi

= µ−1
i

(
SiL

α
i

λii

)1/ε

.

Using labor in country i as numeraire (wi = 1), we can rewrite the above two expres-

sions as

µSiµ
−ε
i P εi βiL̄i +

∑
n6=i

Siτ
−ε
ni µ

−ε
n P εnβnwnL̄n = L1−α

i ,

and

P−εi = µ−εi
SiL

α
i

λii
.

These two equations further imply

P
ε/α
i = µ

ε/α
i

(1−∆)λ
(1−α)/α
ii

S
1/α
i βiL̄i

,

where ∆ ≡ Lα−1
i

∑
n6=i Siτ

−ε
ni µ

−ε
n P εnβnwnL̄n.

Since with trade we have 0 < ∆ < 1 and λii < 1, while with autarky we have ∆ = 0

and λii = 1, it follows Pi (welfare) is lower (higher) under trade than in autarky.

For case (b), the complementary slackness condition implies that (recall for this

case a corner equilibrium is a possibility)

∑
n

Si(wiτni)
−εµ−εn P εnβnwnL̄n ≤ wi.
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Setting wi = 1 by choice of numeraire, this implies

P εi ≤ µεi
1−∆′

SiβiLi
,

where ∆′ ≡
∑

n6=i Siτ
−ε
ni µ

−ε
n P εnβnwnL̄n. With trade we have 0 < ∆′ < 1, whereas in au-

tarky we have ∆′ = 0. Moreover, in autarky the above inequality turns into an equality.

Hence Pi is lower with trade than in autarky. �

D.2. Derivation of Threshold for Outside Good

Letting xi ≡ wiLi, yi ≡ P ε, ani ≡ Siw
−α−ε
i τ−εni , bn ≡ βnwnL̄n and log-differentiating the

system in (15) around an equilibrium point for some change in ani we get

d lnxi =
1

1− α
∑
n

χni (d ln ani + d ln yn) for i = 1, ..., N,

d ln yi = −
∑
j

λij (d ln aij + αd lnxj) for n = 1, ..., N,

where λni ≡ anix
α
i yn are import shares and χij ≡

aijx
α
j yibi∑

n anjx
α
j ynbn

are export shares (i.e.

χij is the share of total country j exports directed to country i).

Let X be the matrix of export shares with elements χni, Λ be the matrix of import

shares with elements λni, let X and Y be column vectors with elements d lnxi and

d ln yi, let A be the matrix with typical element d ln ani, and let matrix 1 be a column

vector whose entries are all ones. We can rewrite the system in matrix form as

X =
1

1− α
([
X T ◦AT

]
1 + X TY

)
,

Y = − [Λ ◦A] 1− αΛX,

where the symbol “◦” denotes the Hadamard product. Substituting the first equation

into the second and rearranging we get

(
γI + ΛX T

)
Y = −

(
γ [Λ ◦A] 1 + Λ

[
X T ◦AT

]
1
)
, (32)

where γ =
1− α
α

.
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Since
∑

n λnibn = xi implies χij =
λijbi
xj

, we can write X = BΛL−1 and by ex-

tension ΛX T = ΛL−1ΛTB, where L is a diagonal matrix with elements xi on the di-

agonal and B is a diagonal matrix with elements bi on the diagonal. Observe that

matrices ΛL−1ΛTB and
(
B

1
2 Λ
)
L−1

(
B

1
2 Λ
)T

have the same eigenvalues, and that ma-

trix
(
B

1
2 Λ
)
L−1

(
B

1
2 Λ
)T

is positive semidefinite. It then follows that all eigenvalues of

ΛL−1ΛTB are real and nonnegative, which, in turn, implies that eigenvalues of γI +

ΛX T are real and positive for any γ > 0, and so det
(
γI + ΛX T

)
> 0 for γ > 0. Since we

are interested only in the signs of entries of Y in expression (32), we can then focus on

−det
(
γI + ΛX T

)
Y = adj

(
γI + ΛX T

) (
γ [Λ ◦A] 1 + Λ

[
X T ◦AT

]
1
)
, (33)

where adj (·) is the adjugate of a matrix.

Consider now the case N = 2 and without loss of generality consider a unilateral

trade liberalization for country 1. We are then interested in the sign of ∂ ln y1/∂ ln a12,

and so for this case we have d ln a11 = d ln a22 = d ln a21 = 0 and d ln a12 6= 0. Using the

facts adj
(
γI + ΛX T

)
= γI + adj

(
ΛX T

)
(this is true only in the case of 2 × 2 matrices),

adj
(
ΛX T

)
= adj

(
X T
)
adj (Λ) and adj (Λ) Λ = det (Λ), and applying the result in (33)

together with some manipulation we have

−det (γI + ΛX )

λ12d ln a12
Y = γ2

(
1

0

)
+ γ

 λ21χ21 + λ22χ22 + χ12

−λ21χ11 − λ22χ12 +
λ22

λ12
χ12

 +
χ12

λ12
det (Λ)

(
−χ21

χ11

)
.

Using the expression above together with some algebra one can then show that there

exists γ̄1,τ > 0 such that for any γ ∈ (0,∞) we have that ∂ ln y1/∂ ln a12 is negative if and

only if γ > γ̄1,τ , with γ̄1,τ given by

γ̄1,τ =

√
Dτ − (λ21χ21 + λ22χ22 + χ12)

2
> 0,

where

D1,τ ≡ (λ21χ21 + λ22χ22 + χ12)2 + 4 (χ11χ22 − χ12χ21)λ21
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is always positive.40 Since γ > γ̄1,τ ⇔ α < ᾱ1,τ = 1/(1 + γ̄1,τ ) and since

−∂ lnP1/∂ ln τ12 = ∂ lnP ε1 /∂ ln τ−ε12 = ∂ ln y1/∂ ln a12,

the result in the text immediately follows.

Consider now a productivity increase in country 2. Here we are interested in the

sign of ∂ ln y1/∂ ln a22, and so for this case we have d ln a11 = d ln a21 = 0 and d ln a22 6= 0.

Note also that we have d ln a12 = d ln τ−ε12 + d ln a22 = d ln a22 since d ln τ−ε12 = 0. Analo-

gous to the trade liberalization exercise above one can readily show that ∂ lnP1/∂ lnS2 =

∂ lnP1/∂ ln a22 < 0 if and only if γ̄Sn ⇔ α < ᾱSn = 1/(1 + γ̄1,S), with γ̄1,S given by

γ̄1,S ≡
√
D1,S −

(
λ21χ21 + χ12−λ11λ22λ

−1
12 χ21

)
2

> 0

where

D1,S ≡
(
λ21χ21 + χ12 − λ11λ22λ

−1
12 χ21

)2
+ 4 (χ11χ22 − χ12χ21)λ21

+ 4
(
λ11λ22λ

−1
12 χ21 + λ22χ22

)
χ22.

The result in the text then immediately follows.

D.3. Derivation of Algebra in Section 4.4

To derive the system of equations in Section 4.4, we start by writing down the system of

equations for the counterfactual equilibrium:

L′i,k ≥ 0, G′i,k
(
w′,L′

k

)
≥ 0, L′i,kG

′
i,k

(
w′,L′

k

)
= 0,

∑
k

L′i,k = L̄i,

with

G′i,k
(
w′,L′

k

)
≡ w′i −

1

L′i,k

∑
n

λ′ni,k(w
′,L′

k)βn,k
(
w′nL̄n +Dn

)
,

40In particular, it is straight forward to verify that τ12τ21 ≥ 1 implies χ11χ22 − χ12χ21 ≥ 0.
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and

λ′ni,k(w
′,L′

k) =
S′i,k(L

′
i,k)

αk
(
w′iτ

′
ni,k

)−εk
∑

l S
′
l,k(L

′
l,k)

αk

(
w′lτ
′
nl,k

)−εk .
This can be rewritten in hat notation as

L̂i,kLi,k ≥ 0,
G′i,k

(
ŵ, L̂k

)
wi

≥ 0, L̂i,kwiLi,k
G′i,k

(
ŵ, L̂k

)
wi

= 0,

∑
k

L̂i,kwiLi,k = wiL̄i,

with

G′i,k
(
ŵ, L̂k

)
= ŵiwi −

1

L̂i,kLi,k

∑
n

λ′ni,k
(
ŵ, L̂k

)
βn,k

(
ŵnwnL̄n +Dn

)
,

and

λ′ni,k
(
ŵ, L̂k

)
=

Ŝi,kL̂
αk
i,k (ŵiτ̂ni,k)

−εk λni,k∑
l Ŝl,kL̂

αk
l,k (ŵlτ̂nl,k)

−εk λnl,k
.

Substitutions then yield the system in the text.

D.4. Algorithm for Counterfactuals in Subsection 4.4 and Section 5

We now proceed to describe the algorithm used in the quantitative analyses in Sub-

section 4.4 and Section 5.41 For some given L̂ =
{
L̂ik

}
, we can use the tatonnement

process proposed by Alvarez and Lucas (2007) to find the wages that clear labor mar-

kets. This entails42

w
(t+1)
i = w

(t)
i + ν

∑
kX

(t)
ik − w

(t)
i L̄i

L̄i
,

where ν is an arbitrary constant satisfying ν ∈ (0, 1], X(t)
ik ≡

∑
n λ

(t)
nikβnkw

(t)
n L̄n and

λ
(t)
nik =

SikL
αk
ik

(
w

(t)
i

)−εk
τ−εknik∑

j SjkL
αk
jk

(
w

(t)
j

)−εk
τ−εknjk

.

41Note that for Section 5 we only need to work with the model for αk = 0 for all k (the standard multi-
sector Eaton and Kortum (2002)), and so for this case the algorithm is more straightforward.

42For the exercises with fixed wages we simply set v = 0.
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By Walras Law we can show that this is a mapping that takes wages satisfying the re-

striction
∑

iwiL̄i = 1 to this same set. Using hat notation ŵ
(t)
i ≡ w

(t)
i /w

(0)
i with the

superindex (0) denoting variables in the baseline equilibrium (corresponding by as-

sumption to the data), the algorithm can be written as

ŵ
(t+1)
i w

(0)
i = ŵ

(t)
i w

(0)
i + ν

∑
k X̂

(t)
ik X

(0)
ik − ŵ

(t)
i w

(0)
i L̄i

L̄i
,

where now X̂
(t)
ik X

(0)
ik =

∑
n λ̂

(t)
nikλ

(0)
nikβnkŵ

(t)
n w

(0)
n L̄n and

λ̂
(t)
nikλ

(0)
nik =

ŜikL̂
αk
ik

(
ŵ

(t)
i

)−εk
τ̂−εknik λ

(0)
nik∑

j ŜjkL̂
αk
jk

(
ŵ

(t)
j

)−εk
τ̂−εknjk λ

(0)
njk

Finally, using Y (t)
i ≡ w(t)

i L̄i, this can be rewritten as

ŵ
(t+1)
i = ŵ

(t)
i + ν

∑
k X̂

(t)
ik X

(0)
ik − ŵ

(t)
i Y

(0)
i

Y
(0)
i

,

For given L̂ we can implement this algorithm to find ŵi(L̂).

Now we iterate on L̂ (outer loop) using labor demand (in value) for sector ik. More

explicitly, the algorithm is as follows. Define

λ̂nik

(
ŵ, L̂

)
≡

ŜikL̂
αk
ik ŵ

−εk
i τ̂−εknik∑

j ŜjkL̂
αk
jk ŵ

−εk
j τ̂−εknjk λ

(0)
njk

and

X̂ik

(
ŵ, L̂

)
≡ 1

X
(0)
ik

∑
n

λ̂nik

(
ŵ, L̂

)
λ

(0)
nikβnkŵnY

(0)
n .

First, for a given L̂
(l)

, get ŵ(L̂
(l)

) using the following iterative procedure (inner loop):

ŵ
(t+1)
i = ŵ

(t)
i + ν

∑
k X̂ik

(
ŵ(t), L̂

(l)
)
X

(0)
ik − ŵ

(t)
i Y

(0)
i

Y
(0)
i

.
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Then, use the following iterative procedure (outer loop) to get L̂:

L̂
(l+1)
ik =

1

ŵi(L̂
(l)

)Y
(0)
ik

∑
n

λ̂nik

(
ŵ(L̂

(l)
), L̂

(l)
)
λ

(0)
nikβnkŵn

(
L̂

(l)
)
Y (0)
n .
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D.5. Complete Tables for Quantitative Results in Sections 4 and 5

Table 8: Gains from Trade, Common Elasticities

Gains from Trade
Degree of

specialization

ψk = 0

common
ψk = 0.1

common
ψk = 0.2

common
ψk = 0.2

manuf.
All

industries
Manuf.

only

Country (1) (2) (3) (4) (5) (6)

AUS 3.0% 2.7% 2.3% 2.1% 0.036 0.048
AUT 8.7% 8.6% 8.5% 9.0% 0.015 -0.012
BEL 13.8% 13.2% 12.5% 14.0% 0.072 -0.012
BRA 1.6% 1.6% 1.5% 1.5% 0.004 0.004
CAN 5.2% 5.0% 4.7% 4.5% 0.024 0.037
CHN 3.0% 2.8% 2.7% 3.5% 0.016 -0.025
CZE 8.0% 7.8% 7.7% 8.4% 0.014 -0.022
DEU 6.0% 5.7% 5.4% 6.9% 0.033 -0.046
DNK 9.5% 8.6% 7.8% 9.3% 0.090 0.009
ESP 4.1% 3.8% 3.6% 3.8% 0.023 0.011
FIN 5.5% 5.1% 4.8% 6.3% 0.036 -0.042
FRA 4.0% 3.8% 3.7% 4.2% 0.020 -0.006
GBR 4.6% 4.5% 4.5% 4.2% 0.008 0.022
GRC 5.7% 4.6% 3.6% 3.5% 0.110 0.114
HUN 12.3% 12.0% 11.8% 11.9% 0.027 0.018
IDN 3.5% 3.4% 3.3% 3.2% 0.013 0.018
IND 3.1% 3.0% 2.9% 2.8% 0.013 0.014
IRL 10.1% 9.5% 8.8% 10.6% 0.069 -0.027
ITA 3.7% 3.4% 3.2% 3.9% 0.026 -0.015
JPN 2.4% 2.0% 1.6% 2.9% 0.041 -0.023
KOR 6.6% 5.3% 4.1% 7.3% 0.133 -0.037
MEX 4.5% 4.3% 4.1% 3.8% 0.018 0.038
NLD 9.4% 9.3% 9.1% 9.8% 0.020 -0.018
POL 6.0% 5.9% 5.8% 5.9% 0.009 0.006
PRT 6.3% 6.0% 5.7% 5.7% 0.032 0.032
ROM 6.2% 6.0% 5.8% 5.1% 0.020 0.059
RUS 3.2% 2.5% 1.7% 0.8% 0.076 0.123
SVK 11.5% 11.2% 10.9% 11.7% 0.038 -0.011
SVN 13.3% 12.3% 11.3% 13.4% 0.112 -0.008
SWE 6.7% 6.5% 6.4% 7.2% 0.019 -0.026
TUR 4.0% 3.9% 3.7% 4.1% 0.018 -0.004
TWN 9.6% 8.6% 7.5% 10.2% 0.112 -0.036
USA 2.1% 2.0% 1.9% 1.7% 0.007 0.020
RoW 6.9% 6.4% 6.0% 5.8% 0.050 0.061
Average 6.3% 5.9% 5.6% 6.1% 0.040 0.008
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Table 9: Gains from Trade, Caliendo-Parro elasticities

Gains from Trade
Degree and Pattern

of Specialization

ψk = 0 ψk = 0.5
εk

ψk = 1
εk

DS PS Overall

Country (1) (2) (3) (4) (5) (6)

AUS 7.6% 5.5% 3.5% 0.036 -0.111 0.147
AUT 29.1% 29.3% 29.4% 0.015 0.027 -0.012
BEL 29.8% 29.6% 29.3% 0.072 0.051 0.021
BRA 3.4% 3.6% 3.9% 0.004 0.019 -0.015
CAN 16.7% 15.7% 14.7% 0.024 -0.056 0.081
CHN 4.1% 4.0% 4.0% 0.016 0.013 0.003
CZE 16.6% 18.4% 20.2% 0.014 0.166 -0.151
DEU 12.9% 15.1% 17.2% 0.033 0.204 -0.171
DNK 24.6% 22.4% 20.1% 0.090 -0.104 0.194
ESP 9.4% 9.7% 10.0% 0.023 0.047 -0.025
FIN 10.3% 9.9% 9.5% 0.036 0.007 0.029
FRA 9.8% 10.5% 11.3% 0.020 0.076 -0.056
GBR 11.7% 11.4% 11.1% 0.008 -0.018 0.025
GRC 14.5% 10.1% 5.5% 0.110 -0.230 0.340
HUN 31.1% 31.9% 32.7% 0.027 0.103 -0.076
IDN 6.3% 5.3% 4.3% 0.013 -0.058 0.070
IND 4.6% 4.5% 4.4% 0.013 0.006 0.008
IRL 18.3% 15.4% 12.5% 0.069 -0.163 0.232
ITA 8.3% 8.4% 8.5% 0.026 0.036 -0.010
JPN 2.4% 4.3% 6.1% 0.041 0.173 -0.133
KOR 6.2% 8.7% 11.2% 0.133 0.318 -0.185
MEX 11.5% 12.0% 12.5% 0.018 0.057 -0.039
NLD 22.7% 22.0% 21.2% 0.020 -0.044 0.064
POL 18.0% 18.6% 19.3% 0.009 0.064 -0.055
PRT 19.0% 18.1% 17.1% 0.032 -0.050 0.081
ROM 13.8% 12.4% 11.0% 0.020 -0.089 0.110
RUS 15.9% 9.0% 1.6% 0.076 -0.457 0.534
SVK 30.3% 31.7% 33.1% 0.038 0.176 -0.138
SVN 33.1% 33.2% 33.3% 0.112 0.120 -0.008
SWE 13.7% 14.5% 15.4% 0.019 0.084 -0.065
TUR 11.3% 11.9% 12.5% 0.018 0.064 -0.047
TWN 10.2% 9.8% 9.5% 0.112 0.084 0.028
USA 4.5% 4.4% 4.3% 0.007 0.000 0.007
RoW 14.8% 11.1% 7.2% 0.050 -0.241 0.290

Average 14.6% 14.2% 13.7% 0.040 0.008 0.032
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Table 10: Inward Trade Liberalization and Foreign Productivity Improvement

τ̂ni,k = 0.9 ∀ k ∈M ŜCHN,k = 1.01εk ∀ k ∈M

αM = 0 αM = 0.5 αM = 1 αM = 0 αM = 0.5 αM = 1

Country (1) (2) (3) (4)* (5)* (6)*

AUS 0.64% 0.51% 0.25% 0.94% 0.31% -0.76%
AUT 1.61% 1.51% 0.96% 0.19% -0.15% -0.25%
BEL 1.89% 1.81% 1.45% 0.16% -0.11% -0.44%
BRA 0.35% 0.26% 0.16% 0.32% 0.10% -0.13%
CAN 1.18% 1.05% 0.69% 0.50% 0.13% -0.28%
CHN 0.63% 0.54% 0.43% 48.87% 50.99% 53.08%
CZE 1.85% 1.76% 1.50% 0.28% 0.18% 0.32%
DEU 1.26% 1.18% 0.83% 0.08% -0.11% -0.27%
DNK 1.32% 1.21% 0.82% 0.37% -0.05% -0.58%
ESP 0.70% 0.59% 0.43% 0.03% -0.21% -0.47%
FIN 0.98% 0.89% 0.76% -0.11% -0.29% -0.28%
FRA 0.82% 0.74% 0.64% 0.08% -0.09% -0.21%
GBR 0.85% 0.75% 0.58% 0.24% 0.02% -0.18%
GRC 0.90% 0.64% 0.08% 0.62% 0.27% -0.22%
HUN 2.48% 2.35% 1.91% 0.36% 0.15% 0.01%
IDN 0.77% 0.64% 0.48% 0.52% 0.09% -0.19%
IND 0.61% 0.50% 0.28% 0.35% 0.15% 0.13%
IRL 1.19% 1.06% 0.74% -0.20% -0.50% -0.66%
ITA 0.69% 0.61% 0.53% -0.04% -0.18% -0.21%
JPN 0.30% 0.25% 0.20% 0.00% -0.15% -0.17%
KOR 0.80% 0.68% 0.53% -0.00% -0.55% -0.97%
MEX 1.12% 1.00% 0.73% 0.39% 0.29% 0.26%
NLD 1.32% 1.22% 0.80% 0.10% -0.27% -0.86%
POL 1.31% 1.22% 0.87% 0.33% 0.17% 0.04%
PRT 1.14% 1.00% 0.61% 0.31% -0.04% -0.39%
ROM 1.27% 1.11% 0.81% 0.15% -0.10% -0.24%
RUS 0.87% 0.65% 0.24% 0.70% 0.31% -0.24%
SVK 2.31% 2.22% 1.72% 0.12% -0.03% -0.13%
SVN 2.11% 2.01% 1.41% 0.08% -0.08% -0.27%
SWE 1.22% 1.11% 0.81% -0.09% -0.48% -0.81%
TUR 0.73% 0.65% 0.27% 0.05% -0.02% -0.05%
TWN 1.66% 1.51% 0.73% -0.13% -0.29% -0.70%
USA 0.39% 0.30% 0.17% 0.28% 0.05% -0.17%
RoW 1.14% 0.93% 0.56% 0.90% 0.14% -1.12%

* The numbers specified in the column have been multiplied by 100.
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Table 11: Unilateral Trade Liberalization with Fixed Wages

τ̂ni,k = 0.99 ∀ k ∈M τ̂ni,k = 0.9 ∀ k ∈M

2× 2 N × S

αM = 0 αM = 0.5 αM = 1 αM = 0 αM = 0.5 αM = 1 αM = 0 αM = 0.5 αM = 1

Country (1) (2) (3) (4) (5) (6) (7) (8) (9)

AUS 0.08% 0.05% -0.00% 0.91% 0.69% -0.00% 0.89% 0.71% 0.22%
AUT 0.17% 0.15% -0.00% 1.97% 1.82% 0.31% 1.94% 1.81% 1.12%
BEL 0.19% 0.18% -0.01% 2.12% 2.08% 1.44% 2.10% 2.05% 1.75%
BRA 0.05% 0.03% -0.00% 0.60% 0.36% -0.00% 0.59% 0.38% 0.03%
CAN 0.13% 0.11% -0.00% 1.54% 1.32% -0.03% 1.51% 1.34% 0.68%
CHN 0.08% 0.05% -0.01% 1.04% 0.68% -0.09% 1.01% 0.79% 0.91%
CZE 0.21% 0.18% -0.00% 2.39% 2.15% -0.03% 2.36% 2.15% 1.05%
DEU 0.14% 0.12% -0.01% 1.71% 1.50% -0.18% 1.69% 1.54% 1.51%
DNK 0.14% 0.13% -0.00% 1.56% 1.48% 0.62% 1.55% 1.46% 0.90%
ESP 0.09% 0.06% -0.00% 1.13% 0.85% -0.01% 1.10% 0.89% 0.24%
FIN 0.11% 0.09% -0.00% 1.36% 1.13% -0.01% 1.33% 1.14% 0.22%
FRA 0.10% 0.08% -0.00% 1.18% 0.98% -0.04% 1.17% 1.01% 0.74%
GBR 0.09% 0.08% -0.00% 1.10% 0.96% -0.03% 1.08% 0.97% 0.68%
GRC 0.12% 0.08% -0.00% 1.40% 1.08% -0.00% 1.37% 1.12% 0.51%
HUN 0.26% 0.24% -0.00% 2.93% 2.79% 1.27% 2.89% 2.73% 2.07%
IDN 0.09% 0.06% -0.00% 1.16% 0.80% -0.00% 1.11% 0.86% 0.50%
IND 0.08% 0.05% -0.00% 1.01% 0.67% -0.01% 0.97% 0.73% 0.49%
IRL 0.13% 0.11% -0.00% 1.50% 1.39% -0.01% 1.49% 1.37% 0.77%
ITA 0.09% 0.06% -0.00% 1.10% 0.82% -0.03% 1.09% 0.86% 0.21%
JPN 0.04% 0.03% -0.00% 0.55% 0.35% -0.02% 0.54% 0.36% -0.01%
KOR 0.11% 0.07% -0.00% 1.35% 0.97% -0.02% 1.34% 0.98% -0.06%
MEX 0.13% 0.10% -0.00% 1.61% 1.26% -0.02% 1.56% 1.31% 0.37%
NLD 0.14% 0.13% -0.00% 1.54% 1.47% 0.66% 1.52% 1.45% 1.11%
POL 0.15% 0.12% -0.00% 1.77% 1.50% -0.02% 1.71% 1.53% 0.80%
PRT 0.14% 0.11% -0.00% 1.60% 1.36% -0.01% 1.57% 1.38% 0.52%
ROM 0.15% 0.11% -0.00% 1.82% 1.47% -0.00% 1.76% 1.53% 1.10%
RUS 0.10% 0.06% -0.00% 1.23% 0.84% -0.00% 1.17% 0.90% 0.66%
SVK 0.24% 0.23% -0.00% 2.75% 2.63% 1.23% 2.73% 2.60% 1.71%
SVN 0.23% 0.21% -0.00% 2.55% 2.42% 1.08% 2.52% 2.38% 1.40%
SWE 0.13% 0.11% -0.00% 1.58% 1.40% -0.02% 1.55% 1.40% 0.90%
TUR 0.09% 0.06% -0.00% 1.14% 0.81% -0.01% 1.07% 0.88% 0.47%
TWN 0.19% 0.16% -0.00% 2.22% 1.95% -0.04% 2.17% 1.88% 0.94%
USA 0.06% 0.04% -0.00% 0.70% 0.48% -0.04% 0.68% 0.55% 0.47%
RoW 0.14% 0.11% -0.01% 1.64% 1.40% -0.20% 1.61% 1.43% 1.11%
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Table 12: Foreign Productivity Improvement with Fixed Wages

ŜRoW,k = 1.01εk ∀ k ∈M ŜRoW,k = 2εk ∀ k ∈M ŜCHN,k = 1.01εk ∀ k ∈M

2× 2 N × S

αM = 0 αM = 0.5 αM = 1 αM = 0 αM = 0.5 αM = 1 αM = 0 αM = 0.5 αM = 1

Country (1)* (2)* (3)* (4) (5) (6) (7)* (8)* (9)*

AUS 7.47% 3.05% -7.11% 10.31% 10.14% 10.15% 1.66% 1.13% -0.62%
AUT 16.99% 9.50% -47.78% 17.80% 17.70% 17.72% 0.79% -0.25% 0.61%
BEL 18.97% 14.73% -85.11% 16.81% 16.79% 16.81% 1.05% 0.30% -3.95%
BRA 4.61% 0.46% -5.33% 11.09% 10.27% 10.15% 0.88% 0.36% 0.25%
CAN 12.96% 6.23% -21.34% 15.10% 14.99% 15.03% 1.86% 1.31% -2.77%
CHN 8.02% -0.67% -16.28% 19.14% 18.96% 20.14% 40.93% 47.40% 74.24%
CZE 20.30% 9.64% -51.27% 23.36% 23.18% 23.20% 2.46% 1.80% 7.75%
DEU 14.26% 5.27% -40.92% 17.89% 17.92% 18.17% 1.56% 0.61% -3.74%
DNK 13.71% 8.82% -43.30% 13.16% 13.11% 13.11% 0.97% 0.23% 1.52%
ESP 9.17% 3.06% -11.18% 13.45% 13.23% 13.27% 0.94% 0.43% 0.26%
FIN 11.19% 2.38% -28.54% 15.34% 15.08% 15.09% 1.28% 0.36% -0.16%
FRA 9.82% 3.56% -18.07% 12.62% 12.52% 12.60% 0.86% 0.29% 0.62%
GBR 9.38% 4.83% -16.24% 10.33% 10.28% 10.31% 1.05% 0.63% 0.33%
GRC 11.74% 6.95% -4.39% 14.25% 14.09% 14.09% 0.87% 0.28% 0.48%
HUN 25.66% 17.03% -76.88% 25.62% 25.52% 25.53% 2.46% 1.62% 16.01%
IDN 9.17% 2.00% -11.34% 16.20% 15.66% 15.64% 2.23% 1.19% -0.22%
IND 7.97% 1.93% -8.05% 15.21% 14.64% 14.65% 2.00% 1.40% 3.22%
IRL 12.83% 5.61% -46.63% 14.15% 14.04% 14.05% 1.39% 0.54% 1.87%
ITA 8.85% 1.69% -15.11% 14.18% 13.91% 14.01% 0.77% -0.04% 0.13%
JPN 4.22% -0.68% -8.31% 10.38% 9.75% 9.87% 1.48% 0.25% -3.19%
KOR 10.66% 0.46% -20.93% 19.66% 19.05% 19.13% 3.45% 0.74% -11.19%
MEX 13.24% 5.02% -16.90% 18.32% 18.06% 18.11% 2.12% 1.62% -1.57%
NLD 13.52% 8.79% -52.95% 12.88% 12.84% 12.86% 1.27% 0.88% -0.41%
POL 14.78% 6.18% -27.07% 18.17% 17.99% 18.01% 1.63% 1.14% 0.54%
PRT 13.55% 6.66% -19.55% 15.77% 15.62% 15.62% 0.43% -0.37% 0.96%
ROM 15.19% 7.30% -15.50% 19.18% 18.95% 18.95% 0.80% 0.00% 2.79%
RUS 9.90% 4.71% -4.31% 15.60% 15.26% 15.29% 1.66% 1.06% 0.02%
SVK 24.11% 16.06% -80.89% 23.77% 23.67% 23.68% 1.85% 0.70% -5.44%
SVN 22.32% 14.67% -69.27% 22.01% 21.91% 21.91% 1.29% 0.27% 11.58%
SWE 13.29% 5.41% -35.17% 15.54% 15.40% 15.42% 0.70% -0.32% 1.25%
TUR 9.08% 1.96% -12.45% 15.21% 14.79% 14.79% 1.23% 0.53% 1.84%
TWN 18.58% 6.98% -50.21% 22.95% 22.74% 22.78% 3.93% 1.15% -21.74%
USA 5.53% 1.98% -4.81% 9.36% 9.37% 9.68% 1.36% 0.86% -0.02%
RoW 13.79% 7.49% -18.09% 16.65% 16.83% 17.20% 3.01% 2.17% -7.27%

* The numbers specified in the column have been multiplied by 100.
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Table 13: Scale and Trade Flows

α = 0.5 α = 1

DSi D̂Si ÊXi D̂Si ÊXi

Country (1) (2) (3) (4) (5)

AUS 0.04 -60.80% -9.44% -93.03% -16.61%
AUT 0.02 -61.85% -0.85% -83.99% -1.38%
BEL 0.07 -64.83% -0.86% -98.20% -0.36%
BRA 0.00 -27.81% -3.99% -49.37% -7.73%
CAN 0.02 -62.92% -1.84% -93.10% -2.57%
CHN 0.02 -50.09% -5.71% -77.27% -10.19%
CZE 0.01 -64.56% -2.24% -89.40% -4.07%
DEU 0.03 -57.46% -3.45% -86.77% -6.47%
DNK 0.09 -72.81% -7.52% -96.89% -10.50%
ESP 0.02 -65.03% -2.08% -92.65% -3.93%
FIN 0.04 -56.97% -5.17% -84.00% -9.23%
FRA 0.02 -65.84% -2.65% -94.39% -5.50%
GBR 0.01 -52.64% -2.09% -80.93% -3.93%
GRC 0.11 -80.81% -34.11% -92.28% -36.71%
HUN 0.03 -61.97% -2.43% -86.21% -4.16%
IDN 0.01 -39.76% -3.14% -73.45% -7.05%
IND 0.01 -56.57% -3.09% -78.23% -4.30%
IRL 0.07 -62.27% -4.05% -92.27% -6.43%
ITA 0.03 -67.40% -3.66% -95.44% -6.92%
JPN 0.04 -64.05% -7.84% -91.77% -16.35%
KOR 0.13 -64.98% -7.19% -94.25% -17.12%
MEX 0.02 -47.52% -3.45% -75.86% -6.32%
NLD 0.02 -58.22% -2.80% -84.96% -5.20%
POL 0.01 -64.82% -2.10% -89.59% -3.65%
PRT 0.03 -64.28% -1.68% -90.12% -2.58%
ROM 0.02 -50.04% -1.92% -74.73% -2.60%
RUS 0.08 -50.66% -13.67% -79.56% -25.18%
SVK 0.04 -68.64% -2.56% -95.38% -4.71%
SVN 0.11 -59.87% -1.38% -97.67% -0.71%
SWE 0.02 -56.61% -2.67% -85.26% -5.07%
TUR 0.02 -56.67% -7.46% -81.44% -13.15%
TWN 0.11 -64.59% -8.37% -93.34% -16.58%
USA 0.01 -47.24% -4.85% -71.86% -8.63%
RoW 0.05 -53.75% -7.86% -84.78% -15.04%
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