Faculty of Science and Technology

Mona School of Engineering

UNDERGRADUATE INFORMATION GUIDE

Regulations & Syllabus
2016-2017
CONTENTS

Mission Statement .. 1
Dress code and conduct .. 2
Staff Listing ... 3
Message from the Director ... 7

SECTION 1: General Information

Programmes of study .. 8
Academic Quality Assurance .. 8
Course Material .. 8

SECTION 2: Undergraduate Regulations

Classification of Degree .. 9
Qualification for Admission ... 9
Grade Point Average (GPA) Requirements .. 10

SECTION 3: Undergraduate Course Listings and Descriptions

BSc in Civil Engineering ... 13
BSc in Computer Systems Engineering .. 23
BSc in Electrical Power Engineering ... 30
BSc in Electronics Engineering ... 34
MISSION STATEMENT

The mission of the Mona School of Engineering is to be the provider of a world class quality education in Engineering and Research and Development programmes in support of Caribbean business, industry and infrastructure; with its graduates, staff and facilities being at the forefront in propelling growth, development and innovation in the region.
DRESS CODE AND CONDUCT

Students must at all times conduct and present themselves in a manner in keeping with the nature of the Engineering Profession, and as directed by the Department in which the student is registered. In particular, due to Occupational Health and Safety issues in the laboratories, PRESCRIBED LABORATORY ATTIRE WOULD BE ENFORCED AT ALL TIMES. Any student who is not appropriately attired SHALL NOT BE ALLOWED ENTRY in any Laboratory or Workshop.

Student ID cards MUST be clearly displayed at all times when on UWI premises. Student ID cards are also required to facilitate all transactions in the Faculty/University.

Food and drink SHALL NOT be brought into classrooms or laboratories.
STAFF LISTING

DIRECTOR AND DEPUTY DEAN

Aiken, Paul
BSc, MPhil (Physics) UWI; MSc, PhD (Electrical Engineering), Columbia University, New York; Senior Member IEEE, Former Snr R&D Eng. Intel; Senior Lecturer & Director of Mona School of Engineering;
Ext: 2254, Office: 977 1924

ADMINISTRATIVE STAFF

Scarlett, Cherri-Ann
Senior Administrative Assistant
Ext: 2254

Gray, Shanique
Administrative Assistant 2
Ext: 2254

Williams, Tena
Customer Service Representative
Ext: 2254

TECHNICAL STAFF

Falconer, Lindon
Electronics Engineer
BSc (electronics, Comp Sci), MSc (Digital Tech), UWI, Mona. Former Snr Eng. Digicel Projects and Laboratories Coordinator
Ext: 2254

Brown, Errol
Senior Electronics Technologist
Inventory and PCB constructions
Ext: 2254

Brooks, Joseph
Senior Electronics Technologist
Equipment calibration and lab Tech
Ext: 2254

Thompson, Gowan
Electrical and Workshop Technician
Ext: 2254

ACADEMIC STAFF

PROFESSORS

Coore, Daniel
PhD, Massachusetts Inst. of Tech. (MIT)
Department of Computing
(Computer Systems Engineering)
Ext: 2814

Imbert, Clement (secondment)
Faculty of Engineering: St Augustine
BSc (Eng) (UWI), MSc Tech (Brunel), PhD (UWI) FAPETT, MASME
(Materials Technology & Manufacturing Processes)

Latchman, Haniph (visiting professor)
University of Florida
BSc (Eng) (UWI), D,Phil, Oxford (Electrical Engineering)
(Control systems, communications and computer networks)

SENIOR LECTURERS

Aiken, Paul
BSc, MPhil (UWI), MSc, PhD (Columbia U)
Mona School of Engineering
Industry: Managing Director of Mona-Tech Engineering Services
(Electronics/ Electrical Engineering)
Ext: 2254, Office 977 1924

Brown, Noel
PhD, Queens University
Mona School of Engineering
Industry: Former Director-JenTech Consultants
Hay, Carlton
PhD, University of Florida (Gainesville)
Mona School of Engineering
Industry: Managing Director NHL Engineering Ltd.
(Geotechnical, Materials)
Ext: 2254, Office 977-1924

Clarke, Leo
PhD, UWI
Department of Physics
(Embedded Systems & Microcontrollers)
Ext: 2274

Mandal, Arpita
PhD, UWI
Department of Computing
(Database)
Ext 2815

Coy, Andre
PhD, Sheffield University
Department of Physics
(Wireless communications, DSP, Signals and Systems)
Ext: 2274

Mansingh, Gunjan
PhD, Indian Institute of Technology
Department of Geology
(Geology and Engineering Hydrology)
Ext

Ferhat, Marhoun
PhD,
Department of Physics
(Physics for Engineers)
Ext: 2277

Mugisa, Ezra
PhD
Head, Department of Computing
(Software Engineering)
Ext: 2815

Ferguson, Eyton
MSc
Department of Computing
(Object Oriented Programming)
Ext: 2815

Myers, Leary
PhD, Howard University
Department of Physics
(Electronics Devices)
Ext: 2274

Fokum, Daniel
PhD, Kansas State University
Department of Computing
(Wireless Networks and Communications)
Ext 2815

Smith, David
PhD, Queens University
Mona School of Engineering
Industry: Director-Smith-Warner International
(Fluids and Coastal Engineering)

Gaynor, Paul
PhD, UWI
Department of Computing
(Embedded Systems and Architectures)
Ext: 2815

Henry, Tania
PhD, Yale University
Mona School of Engineering
(Materials and Nano-Engineering)
Ext: 2254

Lawrence, Adrian
PhD, University of Florida (UF)
Mona School of Engineering (Civil Engineering)
Ext: 2254

McMorris, Nicolas
PhD, University of Delaware
Mona School of Engineering (Civil Engineering)
Ext: 2254

Spence, Kirk
PhD, Louisiana State University (LSU)
Mona School of Engineering (Computer Systems Engineering)
Ext: 2254

Taylor, Ashley
PhD, Illinois State University
Department of Computing (Operating Systems and Animation)
Ext: 2815

Thomas, Omar
PhD, Florida State University
Mona School of Engineering (Civil Engineering)
Ext: 2254

PART–TIME LECTURERS

Ausaru, Ajani
Department of Mathematics (Engineering Maths 1)
Ext: 2284

Barrett, Raphael
MBA
Industry: Consultant (Engineering Economics and Accounts)

Dennis, Haile
MSc
International Centre for Nuclear Sciences (Nuclear Power Engineering)

Downer-Edward, Vivalyn
Attorney at Law (Civil Engineering Law)
Ext: 2254

Ellis, Noel
MSc
Industry: Aviation and Communications (Telecommunication)
Ext: 2254

Falconer, Lindon
MSc, PhD (pending) UWI – Sheffield U
Mona School of Engineering Electronics Labs and Projects Coordinator (Embedded Systems and Robotics)
Ext: 2254

Fletcher, Maurice
PhD, (Introduction to Engineering)
Ext: 2254

Lee, Martel
MSc
Industry: Civil Engineer (Building Services)
Ext: 2254

Lyle, Ervin
MSc
Industry: Automation Consultant (Industrial Automation and Controls)
Ext: 2254

Johnson, Vance
MSc
Industry: Civil Engineering
(Geotechnical Engineering)
Ext: 2254

Mangaroo, Basil
BSc. UWI St. Augustine
Electro-Mechanical Engineering
Department of Chemistry- Senior Engineer
(Machine Shop and Electrical Labs & Projects)

Plummer, Richard
M.Phil
Department of Mathematics
(Statistics & Probability)
Ext: 2284

Rannie, Richard
M. Arch, Caribbean Sch of Architecture
Industry: Architect, Semiotics Ltd
(Engineering Graphics)

Stewart, Omar
MSc.

Industry (JPSCo)
(Electrical Power Engineering)

Thomas, Lowell
MSc,
Electronics Engineering
(Power Plant Instrumentation)

Small, Andre
MPhil, UWI
Department of Mathematics
(Engineering Maths 2)
Ext: 2284

Walker, Shelly-Ann
Attorney at Law
(Engineering Management -Business Law)
MESSAGE FROM THE DIRECTOR

On behalf of all staff of the Mona School of Engineering (MSE) in the Faculty of Science and Technology of The University of the West Indies let me welcome all new and returning students for the 2016/2017 Academic Year.

The first cohort of five civil engineers and four computer systems engineers have just completed their BSc programme of study. This year will also mark the graduation of the fifth cohort of electronics engineers. The trend of immediate employment has continued with industries encouraging us to increase our numbers to meet their demand.

We are very aware that the US$10,000 annual tuition fee is challenging for most of you. We have been talking to potential investors to set up a full-fee loan structure for needy students, but so far, our efforts are fruitless. We will none-the-less double our efforts this year. Additionally, we will be implementing a work-study rotation type internship in partnership with Mona-Tech Engineering Services. Eligible students will have the opportunity to be employed for as much as 20 hours per week all year round, earning in excess of $300,000 per year.

We continue to strengthen our partnerships with local and international industries. We have established academic partnerships with University of Florida and SUNY Binghamton University, and successfully implemented our very first online class. Prof Haniph Latchman taught the level 2 control systems class from his office at the University of Florida, to students sitting here in our Video Conference Room. This is significant for us as it sets the precedence for future classes to be taught by world renowned professors, who would have been otherwise unavailable. We will be exploring additional partnerships this year and have already started preliminary discussions with University of Pennsylvania.

Last year the School of Engineering successfully secured funding to purchase lab equipment for our undergraduate laboratories. You will be pleasantly greeted by a range of state of the art laboratory equipment for your engineering lab sessions across all levels. This year, we will be focusing on building and infrastructure upgrades.

We have two fully operational student clubs for engineering students. They are the Jamaica Institution of Engineers (JIE) student chapter and the Institute of Electrical and Electronics Engineers (IEEE) student chapter. We encourage your strong participation in the activities of these clubs, including the international robotics competition by IEEE South East Region 3.

The MSE continues to work towards creating a world class teaching and research facility, with strong synergies with our industrial and commercial partners. You will witness many new developments during this academic year, all geared towards improving your learning experience and the international quality of our programmes and facilities.

We wish you a very successful 2016/2017 academic year.

Paul Aiken, Senior Member IEEE
BSc, MPhil (Physics); MSc, PhD (Electrical. Eng)
Director and Deputy Dean
Mona School of Engineering
Faculty of Science and Technology
SECTION 1 - GENERAL INFORMATION

1.1 PROGRAMMES OF STUDY
The Mona School of Engineering (MSE) in the Faculty of Science and Technology (FST) at the UWI Mona Campus currently offers 3-year programmes of study leading to a BSc. in the following engineering programmes: Civil Engineering, Computer Systems Engineering, Electrical Power Engineering and Electronics Engineering. Each BSc programme is divided into Levels 1, 2 and 3 and is conducted over three (3) academic years; each year consisting two (2) semesters.

1.2 ACADEMIC QUALITY ASSURANCE
Quality assurance systems are aligned with that of the UWI Faculty of Engineering at St Augustine, Trinidad where they are well defined and linked to programme outcomes and individual course learning outcomes. The Faculty of Engineering, St Augustine oversees the adherence to the guidelines set by the accrediting agencies.

Each BSc Engineering programme at Mona will apply for separate international accreditation (such as ABET) as soon as they are eligible to do so (after graduating the first cohort).

1.3 COURSE MATERIALS
Upon payment of tuition fees, the student shall receive an E-tablet with the prescribed texts for each course within the programme that they are registered for.
SECTION 2 - UNDERGRADUATE REGULATIONS

2.1 CLASSIFICATION OF DEGREE

BSc degrees in the School of Engineering are awarded in the following classes based on the final Grade Point Average (GPA) and the overall performance of the graduating students throughout the programme:

i. First Class Honours
ii. Second Class Honours (Upper Division)
iii Second Class Honours (Lower Division)
iv. Pass

2.2 QUALIFICATIONS FOR ADMISSION TO BSc. ENGINEERING PROGRAMMES

Applications for entry into programmes offered by the Mona School of Engineering will normally be considered if applicants have met the following criteria:

a. In addition to fulfilling general requirements for admission into the Faculty of Science and Technology, applicants for the 3-year engineering programmes must have passes in both units of Mathematics and Physics at CAPE or Cambridge/London Advanced level; or passes in PHYS0411, PHYS1412, PHYS0421, PHYS0422, MATH0100 and MATH0110, normally with a GPA no less than a 2.5; or equivalent qualification from a community college, CASE, UTECH or another university.

b. Applicants with a Diploma in Electrical or Electronics engineering (or equivalent) and a minimum GPA of 2.5, may be eligible to matriculate into Level 2, but may be required to do prescribed Level 1 course(s).

2.3 GPA REQUIREMENTS

The Grade Point Average (or quality points) for this Engineering option is calculated from ALL COURSES from Level 1 to Level 3 that constitutes the candidate’s degree. The actual GPA will determine the class of degree received.

Upon completion of the required courses for the degree, candidates must possess a GPA of 2 or greater in order to satisfy the graduation requirements.
In the determination of GPA, the defined grades with the corresponding quality points shall be:

<table>
<thead>
<tr>
<th>GRADE</th>
<th>QUALITY POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>4.30</td>
</tr>
<tr>
<td>A</td>
<td>4.00</td>
</tr>
<tr>
<td>A-</td>
<td>3.70</td>
</tr>
<tr>
<td>B+</td>
<td>3.30</td>
</tr>
<tr>
<td>B</td>
<td>3.00</td>
</tr>
<tr>
<td>B-</td>
<td>2.70</td>
</tr>
<tr>
<td>C+</td>
<td>2.30</td>
</tr>
<tr>
<td>C</td>
<td>2.00</td>
</tr>
<tr>
<td>F1</td>
<td>1.70</td>
</tr>
<tr>
<td>F2</td>
<td>1.30</td>
</tr>
<tr>
<td>F3</td>
<td>0.00</td>
</tr>
</tbody>
</table>

The following designations may be assigned, but shall not be used in the calculation of Grade Point Average:

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB:</td>
<td>Absent for acceptable reasons other than a medical problem</td>
</tr>
<tr>
<td>AM:</td>
<td>Absent Medical</td>
</tr>
<tr>
<td>CR:</td>
<td>Credit</td>
</tr>
<tr>
<td>DB:</td>
<td>Debarred</td>
</tr>
<tr>
<td>DEF:</td>
<td>Deferred</td>
</tr>
<tr>
<td>EC:</td>
<td>Exemption with credit</td>
</tr>
<tr>
<td>EQ:</td>
<td>Examination Query</td>
</tr>
<tr>
<td>EX:</td>
<td>Exemption</td>
</tr>
<tr>
<td>FM:</td>
<td>Failed Medical – where failure in an examination is attributed to medical reasons as supported by a certificate from an authorized medical practitioner</td>
</tr>
<tr>
<td>I:</td>
<td>Incomplete - indicates that the student has made progress in a course but at the end of the semester has not finished the work required to receive a letter grade. An I designation is not counted in credit hours earned, or quality hours until a letter grade is reported. If neither a letter grade nor notification of an extension of time is received by the Registry from the Office of Dean, the I designation is replaced by an F3 grade at the end of the first six weeks into the next semester. An extension of time may be granted but shall not normally extend beyond the end of the semester in which the extension is granted. Any remaining I symbol at the end of the period of extension will be deemed an F3.</td>
</tr>
<tr>
<td>IM:</td>
<td>Incomplete Medical</td>
</tr>
</tbody>
</table>
IP: In Progress - when a dissertation, thesis, project, student teaching, practicum, internship, proficiency requirement, or other course intended to last more than one semester is not completed during the semester in which the student is registered. The IP designation must be replaced with an appropriate grade on completion of the course.

LW: Late Withdrawal

NFC: Not for credit

NP: Not Passed – when a student has failed a course taken on a pass/fail basis.

NR: Not Reported – when a lecturer fails to submit grades by the published deadline, through no fault of the student.

NV: When a student has been permitted to audit a course but has not done so satisfactorily.

P: Pass – a pass obtained in a course taken on a Pass/Fail basis.

PC: Preliminary credits – used for matriculation purposes or the satisfying of prerequisites only.

The following designations may be assigned and shall count towards the GPA:

DIS: Disqualified

EI: Examination Irregularity – Candidate disqualified from examination on account of breach of the Regulations

FA: When a student is absent from an examination without a valid reason

FC: Failed Coursework – indicates that a candidate has failed to satisfy the Examiner in the coursework component of the course.

FE: Failed Examination – when a candidate has successfully completed the coursework requirement but has failed to satisfy the Examiners in the examination component of the course.

FO: Failed Oral (where an oral examination forms part of the assessment of the course)

FP: Failed Practical

FT: Failed Theory
The scheme to be used for conversion of numerical marks to letter grades shall be as follows:

<table>
<thead>
<tr>
<th>GRADE GPA</th>
<th>MARKS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>90-100</td>
</tr>
<tr>
<td>A</td>
<td>80-89</td>
</tr>
<tr>
<td>A-</td>
<td>75-79</td>
</tr>
<tr>
<td>B+</td>
<td>70-74</td>
</tr>
<tr>
<td>B</td>
<td>65-69</td>
</tr>
<tr>
<td>B-</td>
<td>60-64</td>
</tr>
<tr>
<td>C+</td>
<td>55-59</td>
</tr>
<tr>
<td>C</td>
<td>50-54</td>
</tr>
<tr>
<td>F1</td>
<td>45-49</td>
</tr>
<tr>
<td>F2</td>
<td>40-44</td>
</tr>
<tr>
<td>F3</td>
<td>0-39</td>
</tr>
</tbody>
</table>

Classification of Degrees

<table>
<thead>
<tr>
<th>Degree Class</th>
<th>Cumulative GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>3.6 and above</td>
</tr>
<tr>
<td>Upper Second</td>
<td>3.00 – 3.59</td>
</tr>
<tr>
<td>Lower Second</td>
<td>2.50 – 2.99</td>
</tr>
<tr>
<td>Pass</td>
<td>2.00 – 2.49</td>
</tr>
</tbody>
</table>

Weighted GPA

The Weighted GPA for this Engineering option is the average determined by applying weights of 10%, 30% and 60% for levels 1, 2 and 3 courses (except for the 6 credit final year project(s)), respectively. The compulsory 6 credit final year project shall account for 20% of the total weighted GPA.

Other Regulations

A student having a GPA for a given semester is less than 2.00 shall be deemed to be performing unsatisfactorily, and shall be placed on warning. A student on warning whose GPA for the succeeding semester is less than or equal to 1.99, will be required to withdraw. However, a student may be reinstated if his/her GPA improves beyond 1.99 in Semester 2 by credits obtained in Summer School.

Students must be guided by all other rules and regulations of the Faculty of Science and Technology as outlined in Faculty Handbook A (http://myspot.mona.uwi.edu/fpas/).
SECTION 3- UNDERGRADUATE COURSE LISTINGS & DESCRIPTIONS

Definition Course Codes:
COMP Computer Science (Mona)
CVNG Civil Engineering (St. Augustine)
ECNG Electrical and Computer Engineering (St Augustine Campus)
ELET Electronics (Mona)
ELNG Electronics Engineering (Mona)
ENGR Faculty of Engineering (St. Augustine)
FOUN Foundation Courses
GEOM Geomatics and Geoinformatics (St Augustine)
INFO
MGMT Management Studies (Mona)
MATH Mathematics
PHYS Physics (Mona)

Note: The letter ‘E’ or ‘C’ preceding the credit allocation indicates Examination by Written Papers or by Course Work, respectively.

3.1 B.SC. IN CIVIL ENGINEERING

Coordinator: Dr. Nicolas McMorris

We intend to apply for international Accreditation during the Academic year 2016-17, after the first cohort completes this programme. The current programme is adopted from the St Augustine campus which is accredited by the Joint Board of Moderators (JBM).

Students are required to complete a minimum of 104 credits for the award of the BSc in Civil Engineering.
PROGRAMME STRUCTURE AND CONTENT
Note: E = Examination, C = Coursework, and the numeral after E or C = Number of Credits

LEVEL 1 (all courses are compulsory)

Semester 1: 17 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG1005</td>
<td>Science of Materials</td>
<td>E3</td>
</tr>
<tr>
<td>CVNG1009</td>
<td>Engineering Graphics</td>
<td>C3</td>
</tr>
<tr>
<td>ECNG 1009</td>
<td>Introduction to Programming</td>
<td>C3</td>
</tr>
<tr>
<td>ELNG1101</td>
<td>Physics for Engineers</td>
<td>E3</td>
</tr>
<tr>
<td>ENGR1000</td>
<td>Introduction to Engineering</td>
<td>E3</td>
</tr>
<tr>
<td>ENGR1180</td>
<td>Engineering Mathematics I</td>
<td>E3</td>
</tr>
</tbody>
</table>

Semester 2: 20 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG1000</td>
<td>Mechanics of Solids</td>
<td>E3</td>
</tr>
<tr>
<td>CVNG 1001</td>
<td>Mechanics of Fluids I</td>
<td>E3</td>
</tr>
<tr>
<td>CVNG 1002</td>
<td>Civil Engineering Design I</td>
<td>C3</td>
</tr>
<tr>
<td>CVNG1007</td>
<td>Introduction to Geotechnical Engineering</td>
<td>C2</td>
</tr>
<tr>
<td>CVNG 1011</td>
<td>Geology</td>
<td>E3</td>
</tr>
<tr>
<td>CVNG 1012</td>
<td>Civil Engineering Law</td>
<td>E2</td>
</tr>
<tr>
<td>CVNG1008</td>
<td>Building Services Engineering</td>
<td>E4</td>
</tr>
</tbody>
</table>

LEVEL 2 (all courses are compulsory)

Year - Long Courses (Semesters 1 and 2): 7 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 2003</td>
<td>Civil Engineering Design II</td>
<td>C3</td>
</tr>
<tr>
<td>CVNG 2006</td>
<td>Structural Design I</td>
<td>C4</td>
</tr>
</tbody>
</table>

Semester 1: 13 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 2001</td>
<td>Structural Mechanics</td>
<td>E3</td>
</tr>
<tr>
<td>CVNG2005</td>
<td>Mechanics of Fluids II</td>
<td>E3</td>
</tr>
<tr>
<td>CVNG2008</td>
<td>Soil Mechanics I</td>
<td>E2</td>
</tr>
<tr>
<td>MATH 2230</td>
<td>Engineering Mathematics II</td>
<td>E3</td>
</tr>
<tr>
<td>GEOM 2015</td>
<td>Geomatics for Civil & Environmental Engineers</td>
<td>E2</td>
</tr>
</tbody>
</table>
Semester 2: 12 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 2009</td>
<td>Soil Mechanics II</td>
<td>E2</td>
</tr>
<tr>
<td>CVNG 2010</td>
<td>Civil Engineering Management</td>
<td>E3</td>
</tr>
<tr>
<td>CVNG 2011</td>
<td>Engineering Hydrology</td>
<td>E3</td>
</tr>
<tr>
<td>MATH 2240</td>
<td>Statistics</td>
<td>E2</td>
</tr>
<tr>
<td>GEOM 2017</td>
<td>Geoinformatics for Civil & Environmental Engineers</td>
<td>E2</td>
</tr>
</tbody>
</table>

LEVEL 3

Year-Long (Semesters 1 & 2): 12 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 3014</td>
<td>Civil Engineering Design Project</td>
<td>C6</td>
</tr>
<tr>
<td>CVNG 3015</td>
<td>Special Investigative Project</td>
<td>C6</td>
</tr>
</tbody>
</table>

Semester 1: 14 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 3002</td>
<td>Structural Analysis</td>
<td>E3</td>
</tr>
<tr>
<td>CVNG 3003</td>
<td>Structural Design II</td>
<td>C2</td>
</tr>
<tr>
<td>CVNG 3005</td>
<td>Foundation Engineering</td>
<td>E3</td>
</tr>
<tr>
<td>CVNG 3007</td>
<td>Environmental Engineering I</td>
<td>E3</td>
</tr>
<tr>
<td>CVNG 3009</td>
<td>Highway Engineering</td>
<td>E3</td>
</tr>
</tbody>
</table>

Semester 2: 9 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVNG 3008</td>
<td>Environmental Engineering II</td>
<td>E3</td>
</tr>
<tr>
<td>CVNG 3010</td>
<td>Transportation Engineering</td>
<td>E3</td>
</tr>
<tr>
<td>CVNG 3011</td>
<td>Pavement Design & Management</td>
<td>E3</td>
</tr>
<tr>
<td>CVNG 3013</td>
<td>Coastal Engineering</td>
<td>E3</td>
</tr>
</tbody>
</table>
3.2 BSc in COMPUTER SYSTEMS ENGINEERING

Coordinator: Dr Ezra Mugisa and Mr Lindon Falconer

All Computer Systems Engineering students are required to complete a minimum of 109 credits for the award of the BSc in Computer Systems Engineering. The Foundation courses are not shown.

PROGRAMME STRUCTURE AND CONTENT
Note: E = Examination, C = Coursework, and the numeral after E or C = Number of Credits

LEVEL 1

Semester 1 (18 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELET1400</td>
<td>Introduction to Electronics</td>
<td>E3</td>
</tr>
<tr>
<td>ENGR1000</td>
<td>Introduction to Engineering</td>
<td>E3</td>
</tr>
<tr>
<td>COMP1126</td>
<td>Introduction to Computing I</td>
<td>E3</td>
</tr>
<tr>
<td>COMP1127</td>
<td>Introduction to Computing II</td>
<td>E3</td>
</tr>
<tr>
<td>ENGR1180</td>
<td>Engineering Mathematics I</td>
<td>E3</td>
</tr>
<tr>
<td>ELNG1101</td>
<td>Physics for Engineers</td>
<td>E3</td>
</tr>
</tbody>
</table>

Semester 2 (19 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG1000</td>
<td>Electrical Circuits</td>
<td>E3</td>
</tr>
<tr>
<td>ECNG1012</td>
<td>Engineering Science and Technology</td>
<td>C4</td>
</tr>
<tr>
<td>ECNG1006</td>
<td>Laboratory & Projects I</td>
<td>C3</td>
</tr>
<tr>
<td>ECNG1015</td>
<td>Introduction to Electrical Energy Systems</td>
<td>E3</td>
</tr>
<tr>
<td>COMP1220</td>
<td>Computing and Society</td>
<td>E3</td>
</tr>
<tr>
<td>COMP1161</td>
<td>Object-Oriented Programming</td>
<td>E3</td>
</tr>
</tbody>
</table>

LEVEL 2

Semester 1 (18 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELET2430</td>
<td>Digital Circuits and Microprocessors</td>
<td>E3</td>
</tr>
<tr>
<td>ELET2450</td>
<td>Embedded Systems</td>
<td>E3</td>
</tr>
<tr>
<td>COMP2101</td>
<td>Discrete Mathematics for Computer Science</td>
<td>E3</td>
</tr>
<tr>
<td>COMP2140</td>
<td>Software Engineering</td>
<td>E3</td>
</tr>
</tbody>
</table>
Semester 2 (11 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELET2405*</td>
<td>Practices in Electronics Designs I</td>
<td>C3</td>
</tr>
<tr>
<td>COMP2111</td>
<td>Analysis of Algorithms</td>
<td>E3</td>
</tr>
<tr>
<td>MATH 2240</td>
<td>Probability and Statistics</td>
<td>E2</td>
</tr>
<tr>
<td>COMP2130</td>
<td>Systems Programming</td>
<td>E3</td>
</tr>
</tbody>
</table>

* Special case will be made to offer ELET2405 in semester 2

Summer Course (3 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP3911</td>
<td>Internship in Computing I</td>
<td>3</td>
</tr>
</tbody>
</table>

LEVEL 3 (31 credits)

Students taking Level 3 courses must register for all core courses and any two electives.

YEAR-LONG (compulsory) (6 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG3020</td>
<td>Engineering Capstone Project</td>
<td>C6</td>
</tr>
</tbody>
</table>

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td>E3</td>
<td></td>
</tr>
<tr>
<td>ELET 2460</td>
<td>Signals and Systems</td>
<td></td>
</tr>
<tr>
<td>COMP 3101</td>
<td>Operating Systems</td>
<td></td>
</tr>
<tr>
<td>COMP 3191</td>
<td>Principles of Networks</td>
<td></td>
</tr>
<tr>
<td>ECNG 3021</td>
<td>Introduction to Engineering Management and Accounting Systems</td>
<td>E4</td>
</tr>
<tr>
<td>Electives (select 1)</td>
<td>E3</td>
<td></td>
</tr>
<tr>
<td>INFO 3155</td>
<td>Information Assurance and Security</td>
<td></td>
</tr>
<tr>
<td>ELET 3485</td>
<td>Introduction to Robotics</td>
<td></td>
</tr>
</tbody>
</table>
Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3801</td>
<td>Real Time Embedded Systems</td>
<td>E3</td>
</tr>
<tr>
<td>MGMT3136</td>
<td>New Venture Creation and Entrepreneurship</td>
<td>C3</td>
</tr>
<tr>
<td>Electives (select 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECNG 3016</td>
<td>Advanced Digital Electronics</td>
<td>E3</td>
</tr>
<tr>
<td>MATH2230</td>
<td>Engineering Mathematics 2</td>
<td>E3</td>
</tr>
</tbody>
</table>

3.3 BSc in Electrical Power Engineering

Coordinator: Dr Paul Aiken

All Electrical Power Engineering students are required to complete a minimum of 104 credits for the award of the BSc in Electrical Power Engineering. The Foundation courses are not shown.

PROGRAMME STRUCTURE AND CONTENT

Note: E = Examination, C = Coursework, and the numeral after E or C = Number of Credits

LEVEL 1

Semester 1 (15 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG 1009</td>
<td>Introduction to Programming</td>
<td>C3</td>
</tr>
<tr>
<td>ELET1400</td>
<td>Introduction to Electronics</td>
<td>E3</td>
</tr>
<tr>
<td>ELNG1101</td>
<td>Physics for Engineers</td>
<td>E3</td>
</tr>
<tr>
<td>ENGR1000</td>
<td>Introduction to Engineering</td>
<td>E3</td>
</tr>
<tr>
<td>ENGR1180</td>
<td>Engineering Mathematics 1</td>
<td>E3</td>
</tr>
</tbody>
</table>

Semester 2 (19 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG 1012</td>
<td>Engineering Science and Technology</td>
<td>C4</td>
</tr>
<tr>
<td>CVNG1001</td>
<td>Mechanics of Fluids I</td>
<td>E3</td>
</tr>
<tr>
<td>ECNG1000</td>
<td>Electrical Circuits</td>
<td>E3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Number of Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>ECNG1006</td>
<td>Laboratory & Project Design 1</td>
<td>C3</td>
</tr>
<tr>
<td>ECNG1015</td>
<td>Introduction to Electrical Energy Systems</td>
<td>E3</td>
</tr>
<tr>
<td>COMP1161</td>
<td>Object-Oriented Programming</td>
<td>E3</td>
</tr>
</tbody>
</table>

LEVEL 2

Semester 1 (15 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG2000</td>
<td>Electromechanical Energy Conversion Systems</td>
<td>E3</td>
</tr>
<tr>
<td>ECNG2004</td>
<td>Laboratory & Project Design II</td>
<td>C3</td>
</tr>
<tr>
<td>ELET2450</td>
<td>Embedded Systems</td>
<td>E3</td>
</tr>
<tr>
<td>ELET2460</td>
<td>Signals and Systems</td>
<td>E3</td>
</tr>
<tr>
<td>MATH2230</td>
<td>Engineering Mathematics 2</td>
<td>E3</td>
</tr>
</tbody>
</table>

Semester 2 (15 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG2005</td>
<td>Laboratory & Project Design III</td>
<td>C3</td>
</tr>
<tr>
<td>ECNG2009</td>
<td>Control Systems</td>
<td>E3</td>
</tr>
<tr>
<td>ELET2410</td>
<td>Design and Analysis of Analogue Circuits</td>
<td>E3</td>
</tr>
<tr>
<td>EPNGL010</td>
<td>Nuclear Physics and Reactor Theory</td>
<td>E3</td>
</tr>
<tr>
<td>EPNGL020</td>
<td>Renewable Energy Systems</td>
<td>E3</td>
</tr>
</tbody>
</table>

LEVEL 3

Core Courses: 25 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG3013</td>
<td>Electrical Transmission and Distribution Systems</td>
<td>E3</td>
</tr>
<tr>
<td>ECNG3015</td>
<td>Industrial and Commercial Electrical Systems</td>
<td>E3</td>
</tr>
<tr>
<td>ECNG3020</td>
<td>Special Project (1 year)</td>
<td>C6</td>
</tr>
<tr>
<td>ECNG3021</td>
<td>Introduction to Engineering Management and Accounting Systems</td>
<td>E4</td>
</tr>
<tr>
<td>EPNGL020</td>
<td>Practical Analysis of Electrical Power Systems</td>
<td>E3</td>
</tr>
<tr>
<td>PHYS3385</td>
<td>Electromagnetism</td>
<td>E3</td>
</tr>
<tr>
<td>MGMT3136</td>
<td>Venture Capital and Entrepreneurship</td>
<td>E3</td>
</tr>
</tbody>
</table>

Electives: Select any two
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG3010</td>
<td>Electrical Machines & Drive</td>
<td>E3</td>
</tr>
<tr>
<td>ECNG3012</td>
<td>Power Systems Analysis</td>
<td>E3</td>
</tr>
<tr>
<td>EPNG3010</td>
<td>Nuclear Power Systems</td>
<td>E3</td>
</tr>
<tr>
<td>EPNG3030</td>
<td>Integrating Electrical Power Systems</td>
<td>E3</td>
</tr>
</tbody>
</table>
3.4 BSc in ELECTRONICS ENGINEERING

Coordinator: Dr Paul Aiken and Mr Lindon Falconer

We intend to apply for ABET Accreditation during the Academic year 2016-17.

Students are required to complete a minimum of 101 credits for the award of the BSc in Electronics Engineering. The Foundation courses are not shown.

PROGRAMME STRUCTURE AND CONTENT

Note: E = Examination, C = Coursework, and the numeral after E or C = Number of Credits

LEVEL 1 (all courses compulsory)

Semester 1: 15 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG1009</td>
<td>Introduction to Programming</td>
<td>C3</td>
</tr>
<tr>
<td>ELET1400</td>
<td>Introduction to Electronics</td>
<td>E3</td>
</tr>
<tr>
<td>ENGR1000</td>
<td>Introduction to Engineering</td>
<td>E3</td>
</tr>
<tr>
<td>ELNG1101</td>
<td>Physics for Engineers</td>
<td>E3</td>
</tr>
<tr>
<td>ENGR1180</td>
<td>Engineering Mathematics 1</td>
<td>E3</td>
</tr>
</tbody>
</table>

Semester 2: 16 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG1012</td>
<td>Engineering Science and Technology</td>
<td>C4</td>
</tr>
<tr>
<td>COMP1161</td>
<td>Object Oriented Programming</td>
<td>E3</td>
</tr>
<tr>
<td>ECNG1000</td>
<td>Electrical Circuits</td>
<td>E3</td>
</tr>
<tr>
<td>ECNG1006</td>
<td>Laboratory & Project Design 1</td>
<td>C3</td>
</tr>
<tr>
<td>ECNG1015</td>
<td>Introduction to Electrical Energy Systems</td>
<td>E3</td>
</tr>
</tbody>
</table>

LEVEL 2 (all courses are compulsory)

Semester 1: 15 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELET 2405</td>
<td>Practices in Electronics 1</td>
<td>C3</td>
</tr>
<tr>
<td>ELET 2430</td>
<td>Digital Circuits and Microprocessors</td>
<td>E3</td>
</tr>
<tr>
<td>ELET 2450</td>
<td>Embedded Systems</td>
<td>E3</td>
</tr>
<tr>
<td>ELET 2460</td>
<td>Signals and Systems</td>
<td>E3</td>
</tr>
</tbody>
</table>
MATH 2230 | Engineering Mathematics 2 | E3

Semester 2: 15 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELET 2415</td>
<td>Practices in Electronics 2</td>
<td>C3</td>
</tr>
<tr>
<td>ELET 2410</td>
<td>Analysis and Design of Analogue Circuits</td>
<td>E3</td>
</tr>
<tr>
<td>ELET 2420</td>
<td>Semiconductor Devices</td>
<td>E3</td>
</tr>
<tr>
<td>ELET 2480</td>
<td>Modern Communications</td>
<td>E3</td>
</tr>
<tr>
<td>ECNG 2009</td>
<td>Control Systems</td>
<td>E3</td>
</tr>
</tbody>
</table>

Summer Apprenticeship/Internship

- **Approved Industry (Summer between Level 2 and Level 3)**
 Summer Apprenticeship is meant to expose students to the practical applications of the concepts learnt in classes and is expected to be a source of motivation and inspiration. It also provides an opportunity to identify potential projects.

- **HEART NTA**
 Complete selected certification courses.

LEVEL 3

Students taking Level 3 courses must:
1. Register for all courses listed as compulsory and core (for chosen option).
2. Select one of the following options:
 a. Telecommunications or
 b. Industrial Instrumentation
3. Select a year-long project (ECNG3020) from the Project Listing.

YEAR-LONG (compulsory): 6 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Number of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG 3020</td>
<td>Special Project</td>
<td>C6</td>
</tr>
</tbody>
</table>

One Semester (compulsory): 13 Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Number of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNG 3021</td>
<td>Introduction to Engineering Management and</td>
<td>E4</td>
</tr>
<tr>
<td></td>
<td>Accounting Systems</td>
<td></td>
</tr>
<tr>
<td>PHYS3386</td>
<td>Electromagnetism</td>
<td>E3</td>
</tr>
</tbody>
</table>
MGMT3136 Entrepreneurship and New Venture Creation E3
ELET3405 Practical Analysis of Advanced Electronics C3

Option 1: Telecommunications (compulsory) (12 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Number of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELET 3480</td>
<td>Wireless Communication Systems</td>
<td>E 3</td>
</tr>
<tr>
<td>ELET 3470</td>
<td>Wireless Transmission & Fiber-Optics</td>
<td>E 3</td>
</tr>
<tr>
<td>ELET 3460</td>
<td>Digital Signal and Image Processing</td>
<td>E 3</td>
</tr>
<tr>
<td>ELNG 3050</td>
<td>Broadband Networks</td>
<td>E 3</td>
</tr>
</tbody>
</table>

Option 2: Industrial Instrumentation (compulsory) (12 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Number of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELET 3430</td>
<td>Instrumentation and Measurements</td>
<td>E 3</td>
</tr>
<tr>
<td>ELNG 3030</td>
<td>Power Electronics and Protection Circuits</td>
<td>E 3</td>
</tr>
<tr>
<td>ELNG 3040</td>
<td>Industrial Automation</td>
<td>E 3</td>
</tr>
<tr>
<td>ELNG 3060</td>
<td>Power Plant Instrumentation</td>
<td>E 3</td>
</tr>
</tbody>
</table>

Electives (3 credits)

Choose any other level 2 or level 3 course from FST or a language course from Faculty of Humanities and Education (FHE).
Course Descriptions: COMPUTER SCIENCE (MONA)

SEMESTER: 1
COURSE CODE: COMP 1126
COURSE TITLE: INTRODUCTION TO COMPUTING I
NUMBER OF CREDITS: 3

Course Description: The style of programming used is functional, and the language used is Python. The choices of programming style and language are intended to encourage students to think about solutions to problems in terms of the requirements of those solutions, rather than the mechanics of how to fulfill them. This entry level course into both the Computing sub-disciplines of Computer Science and Information Technology leans more towards the functional-first approach although basic concepts of Object-Oriented Programming are introduced. It is a first programming course and focuses attention on basic programming concepts (such as computation, function, operation) and structures (such as basic and structured data, procedures).

SEMESTER: 1
COURSE CODE: COMP 1127
COURSE TITLE: INTRODUCTION TO COMPUTING II
NUMBER OF CREDITS: 3

Course Description: The primary goal of the course is to introduce students to the big ideas in Computer Science, and how they are used to control the complexity of developing large computational systems. In this course, recognizing patterns of problem solving is more important than the efficiency of the solutions themselves. An interpreted language is used to facilitate rapid feedback to the student as she experiments with proposed solutions to a problem. We hope that this mode of interaction will build confidence in students as they learn the joys and challenges of programming. This course continues the entry level course COMP1126. It covers concepts and tools that are essential in strengthening the learning of programming. These include data structures and higher order functions.

SEMESTER: 2
COURSE CODE: COMP 1161
COURSE TITLE: OBJECT ORIENTED PROGRAMMING
NUMBER OF CREDITS: 3

PREREQUISITES: ECNG1009

Course Description: Class of objects; methods; members; message passing; encapsulation and information hiding; separation of behavior and implementation. Imperative control structures, assignment state, parameter passing models. Inheritance; polymorphism; class hierarchies. Interface vs. multiple inheritance. Templates/generics. Using APIs; class libraries. Module/packages; name space solution; primitive types; array, string processing; I/O processing; pointers and references; linked structures; strategies for choosing the right data. Collection classes and iteration protocols; event-driven and concurrent programming; exception handling; Introduction to GUI programming; thread programming. OO testing; debugging tools. Object-Oriented Methods: analysis and design, design for re-use; modeling tools, comparison of OOD and top-down/bottom-up design; intro to the concept and use of design patterns.

SEMESTER: 1
COURSE CODE: COMP 2101
COURSE TITLE: DISCRETE MATHEMATICS FOR COMPUTER SCIENCE
NUMBER OF CREDITS: 3

PREREQUISITES: COMP1125 and COMP1160

Course Description: Background, Asymptotic Analysis, Limits Orders of Growth Counting Permutations Combinations Inclusion-exclusion principle Elementary Probability Theory Counting in event space Probability Tree Bernoulli distribution Geometric distribution Binomial distribution Poisson distribution Elementary Number Theory Modular Arithmetic Chinese Remainder Theorem Groups formed from Z modulo a prime Generating Functions and their Applications Convergence Properties Convolution Applications to: signal processing image compression solving linear recurrences probability theory error detection and correction Graph Theory Trees Planarity Spanning Trees Eulerian and Hamiltonian Cycles Colouring Matching

SEMESTER: 2
COURSE CODE: COMP 2130
COURSE TITLE: SYSTEMS PROGRAMMING
NUMBER OF CREDITS: 3
PREREQUISITES: COMP1126, COMP1127 and COMP1161
COURSE DESCRIPTION: This course teaches students how to become more effective programmers especially in dealing with issues of debugging, performance, portability, and robustness. Students will also learn how to read simple assembly code generated by a compiler in order to understand layout of functions, data, function calls, parameters, and simple programming for optimization of assembly code. The course covers data representation, machine-level code, computer arithmetic, elements of code compilation, performance evaluation and optimization, memory organization and management, and systems calls. Possible labs and projects include writing simple device drivers and writing simple programs that interface with peripherals.

SEMESTER: 1
COURSE CODE: COMP 2140
COURSE TITLE: SOFTWARE ENGINEERING
NUMBER OF CREDITS: 3
PREREQUISITES: COMP1125 and COMP1160

SEMESTER: 2
COURSE CODE: COMP 2111
COURSE TITLE: ANALYSIS OF ALGORITHMS
NUMBER OF CREDITS: 3
PREREQUISITES: COMP1125 and COMP1160
COURSE DESCRIPTION: This course builds upon the introductory content that was presented in COMP2190 with an emphasis on computer networking, and covers the fundamental concepts underlying computer networks and the Internet. These concepts are examined from the viewpoints of the application, transport, network, and link and physical layers. This course also surveys the design trade-offs inherent in various communications protocols implemented at different networking layers.

SEMESTER: 1
COURSE CODE: COMP 2190
COURSE TITLE: NET-CENTRIC COMPUTING
NUMBER OF CREDITS: 3
PREREQUISITES: COMP1110, COMP1120, COMP1126, COMP1127 & COMP1161
COURSE DESCRIPTION: The underlying principle of Net-Centric Computing is a distributed environment where applications and data are downloaded from servers and exchanged with peers across a network on as-as-needed basis. This is in stark contrast to the use of powerful personal computers that rely primarily on local resources. The course will provide students with an understanding of the various technologies involved in developing systems and providing services in such distributed environments. It examines the protocols that underpin the interaction among the heterogeneous platforms, the services that are provided by combining various elements of these platforms and ways in which these end systems are presented. End users impose many requirements upon the systems and services they interact with and these requirements play an important role during development. Security is foremost among these requirements and as such, the course also exposes students to important aspects of secure systems development including cryptography, intrusion detection and malware detection. The course will also provide students with the opportunity to experiment with the knowledge they gain. They will be required to engage in weekly laboratory exercises using various tools and/or development environments, and demonstrate an understanding of the concepts by completing graded projects. Bi-weekly lectures and weekly tutorials provide the main avenue for the introduction and discussion of the material.

SEMESTER: 1
COURSE CODE: COMP 3101
COURSE TITLE: OPERATING SYSTEMS
NUMBER OF CREDITS: 3
PREREQUISITES: COMP2340
COURSE DESCRIPTION: This course introduces the fundamentals of operating system design and implementation. The major components of an operating system - process management and resource scheduling, concurrency control, memory management, device management, file management, security, and the interrelations between these components are presented. Consideration is given to how design decisions can affect system performance. This course covers the core body of knowledge in operating systems
and other key aspects that the IEEE/ACM Computing Curricula recommends for computing graduates, and the content and learning outcomes are informed by these guidelines. It also includes practical experience with an operating system at the system administration and system programming levels.

SEMESTER: 1
COURSE CODE: COMP 3191
COURSE TITLE: PRINCIPLES OF COMPUTER NETWORKING
NUMBER OF CREDITS: 3
PREREQUISITES: COMP2140 and COMP2340
COURSE DESCRIPTION: Groups of 2-4 students implement a substantive software system under the supervision of a staff member. The software may address a problem in any domain, but must meet minimum standards of design and functionality, appropriate for a capstone course of a B.Sc. degree.

SEMESTER: 1
COURSE CODE: COMP 3801
COURSE TITLE: REAL TIME EMBEDDED SYSTEMS
NUMBER OF CREDITS: 3
PREREQUISITES: COMP2190
COURSE DESCRIPTION: Groups of 2-4 students implement a substantive software system under the supervision of a staff member. The software may address a problem in any domain, but must meet minimum standards of design and functionality, appropriate for a capstone course of a B.Sc. degree.

SEMESTER: 2
COURSE CODE: COMP 3900
COURSE TITLE: CAPSTONE PROJECT
NUMBER OF CREDITS: 3
PREREQUISITES: COMP2111 and COMP2140 and 8 other credits from level 2 or 3 CS courses
COURSE DESCRIPTION: Groups of 2-4 students implement a substantive software system under the supervision of a staff member. The software may address a problem in any domain, but must meet minimum standards of design and functionality, appropriate for a capstone course of a B.Sc. degree.

SEMESTER: SUMMER
COURSE CODE: COMP 3911
COURSE TITLE: INTERNSHIP IN COMPUTING I
NUMBER OF CREDITS: 3
PREREQUISITES: PERMISSION FROM THE HEAD OF DEPARTMENT
COURSE DESCRIPTION: This internship course will provide students an opportunity to develop a professional understanding of computing so that they are prepared for employment. During this course students will develop the ability to apply the concepts learned in the classroom in an actual working situation and discover the value of work and the rewards of accomplishment. The course also provides an opportunity for students to develop positive work habits, to test aptitude for or interest in a selected field and ensures a 78 natural transition to the highest level of professional preparation as a complement to the education/training goals of the department..

Course Descriptions: CIVIL ENGINEERING (ST. AUGUSTINE)

SEMESTER: 1
COURSE CODE: CVNG 1000
COURSE TITLE: MECHANICS OF SOLIDS
NUMBER OF CREDITS: 3
Course Description: Simple static forces, stress, strain. Hardness, impact & temperature effects. Two-dimensional stress and strain, torsion, combined stresses. Statically determinate beams and plane frames. Bending theory and moment, shearing force, slope, deflexion, moment-area.
SEASON: 2
COURSE CODE: CVNG 1001
COURSE TITLE: MECHANICS OF FLUIDS I
NUMBER OF CREDITS: E3

SEASON: 2
COURSE CODE: CVNG 1002
COURSE TITLE: CIVIL ENGINEERING DESIGN I
NUMBER OF CREDITS: C3
Course Description: Concept of design and its contribution to the quality of life; Civil Engineering Design, the role of geomatics, the environment, and scientific laws in design; Introduction to the design of buildings and Civil Engineering Infrastructure, site appraisal; Risk and vulnerability in design; Health and safety in Civil Engineering Design, environmental impact assessment; Civil Engineering drawing, CAD techniques, introduction to GIS techniques. (Coursework)

SEASON: 1
COURSE CODE: CVNG 1005
COURSE TITLE: SCIENCE OF MATERIALS
NUMBER OF CREDITS: E3
Course Description: Fundamental structure, properties and behavior of other major materials used in Civil Engineering; concrete, asphalt, timber, soil, rock, paints, polymers, adhesives, composite materials; Durability and deterioration; Hazardous materials, classification and handling ion; Hazardous materials, classification and handling.

SEASON: 2
COURSE CODE: CVNG 1007
COURSE TITLE: INTRODUCTION TO GEOTECHNICAL ENGINEERING
NUMBER OF CREDITS: C2
Course Description: The course starts with a general description of typical geotechnical works. The main issues and timescales for these works are discussed, and the roles and responsibilities of the geotechnical engineer working as part of an engineering team are discussed. The characterization of soil is introduced, in terms of particle sizes and shapes, plasticity, consistency, and strength. Some practical activities involved in the preparation of ground are described. The student is given an introduction to the design issues associated with all of the typical geotechnical works.

SEASON: 2
COURSE CODE: CVNG 1008
COURSE TITLE: BUILDING SERVICES ENGINEERING
NUMBER OF CREDITS: E4
Course Description: The course aims to provide an introduction to, and a basic understanding of the scientific principles underlying the major environmental issues related to the built environment. The module also incorporates knowledge of design techniques and issues relating to the internal ‘indoor’ environment.

SEASON: 1
COURSE CODE: CVNG 1009
COURSE TITLE: ENGINEERING GRAPHICS
NUMBER OF CREDITS: C3
Course Description: Sketching as communication of design ideas: types of drawings; components of drawing; drawing standards; plans, sections, elevations, perspectives, projections, isometrics; introduction to typical production drawings of Civil Engineering components; fundamentals of using AUTOCAD for civil engineering design drawings.

SEMESTER: 2
COURSE CODE: CVNG 1010
COURSE TITLE: INFORMATION TECHNOLOGY FOR ENGINEERS
NUMBER OF CREDITS: E2
COURSE DESCRIPTION: Numerical analysis methods – f(x)=0; integration; solutions of differential equations, introduction to computer programming – flow charts; algorithms; variables, types, storage, scope; sequence, branch, loop; graphical output; introduction to using MATLAB for numerical analysis.

SEMESTER: 2
COURSE CODE: CVNG 1011
COURSE TITLE: GEOLOGY
NUMBER OF CREDITS: E3
COURSE DESCRIPTION: Fundamental geology for Civil Engineers: The Rock Cycle Structure and geological history of the Earth, surface geological processes, structural geology, geologic maps and their interpretation. Engineering geology - topics and concepts: Principles of rock mechanics, engineering properties of rocks, the stability of slopes and cuttings, industrial rocks and minerals, hydrogeology, geotechnical investigation, engineering seismology, dams and reservoirs. Field trips, tutorial sessions.

SEMESTER: 2
COURSE CODE: CVNG 1012
COURSE TITLE: CIVIL ENGINEERING LAW
NUMBER OF CREDITS: E2
COURSE DESCRIPTION: An introduction to the different legal systems. The impact of law on the delivery of engineering goods and services; Law and the construction sector. The making of law and the courts; litigation. The elements of contract law and relation with the construction sector. Types of contracts; Different procurement systems; Standard form building contracts (specifications codes of practice; Standards, statutes and local government regulations); The elements of the Law of Tort, disputes and conflict resolution methods; professional associations, codes of ethics, professional liability; Construction claims; Different forms of business organizations; Business law and the company act; Health and safety legislation; Environmental law; Introduction to intellectual property; Confidentiality of information; Warranties and indemnity.; Introduction to international law.

SEMESTER: 1
COURSE CODE: CVNG 2001
COURSE TITLE: STRUCTURAL MECHANICS
NUMBER OF CREDITS: E3
PREREQUISITES: CVNG 1000 MECHANICS OF SOLIDS
COURSE DESCRIPTION: Introductory concepts, equilibrium and compatibility, statical determinacy; compatibility of deformations, flexibility method applied to simple flexural systems; analysis of beams (flexure, shear, thin-walled sections); compression members, strain energy and related theorems. Analysis of beams (asymmetrical bending); simple plastic theory (hinges, mechanism, equilibrium diagram method, redistribution of bending moments, moment capacity, fundamental theorems of plastic collapse), approximate methods of analysis; influence lines for statically determinate systems.

SEMESTER: YEAR-LONG
COURSE CODE: CVNG 2003
COURSE TITLE: CIVIL ENGINEERING DESIGN II
NUMBER OF CREDITS: C3
PREREQUISITES: CVNG1002 CIVIL ENGINEERING DESIGN I
COURSE DESCRIPTION: Innovation and creativity in conceptual design; sustainability; health and safety; investigative procedures. The use of analysis, synthesis and optimisation in design; project planning, networks and graphs. Design of embankments, dams; drainage design; route location and alignment design of roads; assessment of natural hazard impacts and environmental impacts. (Coursework)

SEMESTER 1
COURSE CODE: CVNG 2005
COURSE TITLE: MECHANICS OF FLUIDS II
NUMBER OF CREDITS: E3
PREREQUISITES: CVNG 1001 MECHANICS OF FLUIDS I
COURSE DESCRIPTION: Rotational and irrotational flow; potential flow. Euler and Navier-Stokes equations. Bernoulli theorem, Reynolds stresses, lift and drag, curved flow, vortices. Open channel flow, energy and momentum principles, critical depths, hydraulic jump, backwater curves, surges, resistance to flow, waves, model analysis, and sediment transport.

SEMESTER: YEAR-LONG
COURSE CODE: CVNG 2006
COURSE TITLE: STRUCTURAL DESIGN I
NUMBER OF CREDITS: C4
PREREQUISITES: CVNG 1000 MECHANICS OF SOLIDS
COURSE DESCRIPTION: Conceptual design of structures; structural design of steel, reinforced concrete, timber and masonry structures, use of construction materials in design. (Coursework)

SEMESTER: 1
COURSE CODE: CVNG 2008
COURSE TITLE: SOIL MECHANICS I
NUMBER OF CREDITS: E2
PREREQUISITE: CVNG 1007 INTRODUCTION TO GEOTECHNICAL ENGINEERING
COURSE DESCRIPTION: Calculations for various different measures of particle packing and density are developed, culminating in Terzaghi’s Fundamental Principle of Effective Stress. The theory of elasticity is applied to soils, and practical calculations are developed for short-term elastic settlements of various types of foundation. Concepts of different types and timescales for stress, deformations, and strength are developed. Terzaghi’s Theory of Primary Consolidation is introduced.

SEMESTER: 2
COURSE CODE: CVNG 2009
COURSE TITLE: SOIL MECHANICS II
NUMBER OF CREDITS: E2
PREREQUISITES: CVNG 2008 SOIL MECHANICS II
COURSE DESCRIPTION: Starting from the principles developed in the previous course Soil Mechanics 1, an introduction is presented to the procedures, stages, and approaches of a geotechnical job. After recalling Darcy’s Law, calculations are developed for aquifers, pumping from wells, and more generally the flow of water through soils and its effects on compositional and mechanical stability. The ideas of limit equilibrium and mechanisms are introduced and used to analyze the stability of slopes. Some aspects of landslide stabilization and avoidance are also covered.

SEMESTER: 2
COURSE CODE: CVNG 2010
COURSE TITLE: CIVIL ENGINEERING MANAGEMENT
NUMBER OF CREDITS: E3
PREREQUISITES: NONE
COURSE DESCRIPTION: Introduction to management theory; human resource management, leadership, corporate strategy, communication, conduct of meetings; Management Information Systems (MIS); resolution of engineering ethics, Civil Engineering case studies, resources and reasoning methods; Civil Engineering project management, networks and graphs, quality management; Facilities Management, maintenance management, managing Health and Safety; Introduction to Management Accounting and Financial Management.

SEMESTER: 2
COURSE CODE: CVNG 2011
COURSE TITLE: ENGINEERING HYDROLOGY
NUMBER OF CREDITS: E3
PREREQUISITE: CVNG 2005 MECHANICS OF FLUIDS II
COURSE DESCRIPTION: The water resource system, meteorology, hydrologic cycle, hydro-meteorologic measurements and instrumentation, hydrologic statistics, rainfall and run-off, unit hydrographs, low flows, impoundment reservoirs, reservoir safety, groundwater flow, flow to wells, seawater intrusion, and contaminant transport.

COURSE CODE: CVNG 3002
COURSE TITLE: STRUCTURAL ANALYSIS
NUMBER OF CREDITS: E3
PREREQUISITES: CVNG 2001 STRUCTURAL MECHANICS; CVNG 2006 STRUCTURAL DESIGN I
COURSE DESCRIPTION: Symmetry and anti-symmetry, indeterminacy, slope deflection, moment distribution, structural dynamics, stability, pre-stressed concrete, plates, combined bending and axial loads, arches, influence lines, suspension cables.

SEMESTER: 1
COURSE CODE: CVNG 3003
COURSE TITLE: STRUCTURAL DESIGN II
NUMBER OF CREDITS: C2
PREREQUISITE: PREREQUISITE: CVNG 2001 STRUCTURAL MECHANICS; CVNG 2006 STRUCTURAL DESIGN I
COURSE DESCRIPTION: Computer modelling, hurricane resistant design, earthquake resistant design of concrete and steel moment frames, pre-stressed concrete. (Coursework)

SEMESTER: 1
COURSE CODE: CVNG 3005
COURSE TITLE: FOUNDATION ENGINEERING
NUMBER OF CREDITS: E3
PREREQUISITES: CVNG 2008 SOIL MECHANICS; CVNG 2009 SOIL MECHANICS II
COURSE DESCRIPTION: Site investigations, bearing capacity and settlement, design of spread footings and rafts, pile foundations, sheet pile walls.

SEMESTER: 1
COURSE CODE: CVNG 3007
COURSE TITLE: ENVIRONMENTAL ENGINEERING I
NUMBER OF CREDITS: E3
PREREQUISITES: NONE
COURSE DESCRIPTION: Environmental needs and priorities, pollution, the role of environmental engineering, water quality standards, unit operations in water treatment, sources of wastewater, wastewater quality and effluent standards, unit operations in wastewater treatment, on site treatment and disposal, stream purification processes, sources of solid wastes, treatment of solid and fecal wastes, control of leachates, recycling, environmental impact assessment, soil conservation systems and mitigation of forest destruction.

SEMESTER: 2
COURSE CODE: CVNG 3008
COURSE TITLE: ENVIRONMENTAL ENGINEERING II
NUMBER OF CREDITS: E3
PREREQUISITES: CVNG 2005 and CVNG 3007
COURSE DESCRIPTION: Water supply systems, wastewater collection and disposal systems, hydraulics of treatment plants, pumping stations, urban storm water drainage systems, industrial wastewater and pollutants, treatment systems for industrial and agricultural waste water, solid waste collection systems disaster mitigation, environmental engineering in the built environment.
SEMIESTER: 1
COURSE CODE: CVNG 3009
COURSE TITLE: HIGHWAY ENGINEERING
NUMBER OF CREDITS: E3
PREREQUISITES: MATH 2230, MATH 2240, CVNG 2003, CVNG 2009
COURSE DESCRIPTION: Highway traffic characteristics, capacity of roadways and intersections, design of intersections, traffic management, parking studies; environmental impact, road safety; route location, economic analysis, introduction to transportation planning; pavement materials, pavement and drainage design; quality control and pavement maintenance management systems.

SEMIESTER: 2
COURSE CODE: CVNG 3010
COURSE TITLE: TRANSPORTATION ENGINEERING
NUMBER OF CREDITS: E3
PREREQUISITE: CVNG 3009 HIGHWAY ENGINEERING
COURSE DESCRIPTION: Transport policy, economics and mathematics; design operation and management of air, land and sea transportation systems; Transportation planning, Intelligent Transportation Systems (ITS), architecture design and management; Road safety management systems; managing the environmental impact of transportation.

SEMIESTER: 2
COURSE CODE: CVNG 3011
COURSE TITLE: PAVEMENT DESIGN & MANAGEMENT
NUMBER OF CREDITS: E3
PREREQUISITE: CVNG 3009 HIGHWAY ENGINEERING
COURSE DESCRIPTION: Roads and highways pavement design, airport runway design, seaports and special pavements, pavement management systems, road rehabilitation and maintenance.

SEMIESTER: 2
COURSE CODE: CVNG 3013
COURSE TITLE: COASTAL ENGINEERING
NUMBER OF CREDITS: E3
PREREQUISITE: CVNG 2005 MECHANICS OF FLUIDS II
COURSE DESCRIPTION: Introduction to coastal zone management; The marine environment, coastal processes; Wave generation and propagation; Coastal sediment transport, sediment budget; Port and marine structures. Design of coastal defense works; Port-planning and management. Coastal pollution control, EIA and waste disposal in the coastal zone.

SEMIESTER: YEAR-LONG
COURSE CODE: CVNG 3014
COURSE TITLE: CIVIL ENGINEERING DESIGN PROJECT
NUMBER OF CREDITS: C6
PREREQUISITES: NORMALLY ALL LEVEL 1 AND LEVEL 2 COURSES
COURSE DESCRIPTION: The purpose of this course is to develop the student’s ability in Civil Engineering Design as well as the ability to work in a team. The emphasis is on self-learning, creativity, design, understanding, project team working and communication skills, as well as engineering judgment and problem solving. The project gives professional orientation to work in the final year by simulating as closely as is possible, the investigation and design works which are required for substantial Civil Engineering works and projects in the provision of buildings, lifeline facilities and Civil Engineering infrastructure. The integration of health and safety, and risk and vulnerability in the design process gives the student a complete outlook on the design process.

SEMIESTER: YEAR-LONG
COURSE CODE: CVNG 3015
COURSE TITLE: SPECIAL INVESTIGATIVE PROJECT
NUMBER OF CREDITS: C6
PREREQUISITES: NORMALLY ALL LEVEL 1 AND LEVEL 2 COURSES
COURSE DESCRIPTION: This course is a project-based one, designed to generate an investigative learning atmosphere. The project work is carried out year-long, engenders a sense of enquiry, research and verification in the student, and draws on the first two years of learning in the programme. The emphasis is on self-learning, creativity, understanding, communication skills, as well as on engineering analysis and problem solving. The projects are supervised by tutors from the Department of Civil & Environmental Engineering. Special permission may be sought to pursue a relevant engineering-based project in other Departments in the Faculty of Engineering.
Course Descriptions: ELECTRICAL AND COMPUTER ENGINEERING (ST. AUGUSTINE)

SEMESTER: 1
COURSE CODE: ECNG 1000
COURSE TITLE: ELECTRICAL CIRCUITS
NUMBER OF CREDITS: 3
COURSE DESCRIPTION: This course introduces students to the fundamental building blocks of electrical circuit theory. These include the basic electrical circuit analysis tools required to analyse the behaviour and functional as well as performance characteristics of electrical subsystems containing resistors, inductors and capacitors. These tools are applied to obtain both the full dynamic performance of circuits and the steady state performance of sinusoidal systems. Topics include: concepts of basic electrical quantities such as electric charge, current, voltage, power and energy; network theorems such as Thevenin’s theorem, Norton’s theorem, superposition and maximum power transfer; Laplace transform and the Laplace model; steady state and dynamic responses of simple networks; ac steady state analysis and the complex power model.

COURSE CODE: ECNG 1006
COURSE TITLE: LABORATORY & PROJECT DESIGN I
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
COURSE DESCRIPTION: This course is the first in a series of three Laboratory and Project Design courses. It consists of laboratory exercises to develop models for, and demonstrate the behaviour of energy storage devices operating under various conditions. The properties of energy storage devices would be utilised in a design project which is of use to industry. Students would be exposed to the recommended approach and procedure required to execute a design from a design brief, utilising project planning, time management and safe operating procedures. This course also includes a group project which aims to build team skills.

SEMESTER: 1
COURSE CODE: ECNG1009
COURSE TITLE: INTRODUCTION TO PROGRAMMING
NUMBER OF CREDITS: 3
Course Description: This course introduces students to the field of computing for the purpose of problem solving. Basic concepts of computer architecture and operating systems are discussed leading to compilers and interrupters. Students will be able to describe and analyze data structures, such as those created by using arrays, lists and pointers. This course also involves knowledge of the concepts of loops and iteration techniques, and recursion, in algorithms which include character codes and mathematical operations such as base converters, masking and base arithmetic. The uses of algorithms are introduced for basic problem solving such as brute force/exhaustive methods, greedy methods and divide and conquer. Students are introduced to programming in C and C+ and the visual studio environment, along with data base concepts.

SEMESTER: 2
COURSE CODE: ECNG1012
COURSE TITLE: ENGINEERING SCIENCE AND TECHNOLOGY
NUMBER OF CREDITS: 4
PREREQUISITES: NONE
Course Description: This is an introductory course in Engineering Science and consists of modules to expose students to the following areas: an introduction to mechatronics and its applications in modern system designs; an introduction to thermodynamics including the different forms of energy and their qualitative nature as well as the laws governing energy transformation; the techniques involved in the production of engineering drawings, and the function and utilisation of basic mechanical workshop tools and equipment. On the electrical side, students would be taught to use the oscilloscope, meters, power supplies and signal generators; verify network theorems; design simple circuits for semiconductors, digital and analogue circuits.

COURSE CODE: ECNG 1015
COURSE TITLE: INTRODUCTION TO ELECTRICAL ENERGY SYSTEMS
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
COURSE DESCRIPTION: This course presents an introduction to Electrical Energy Systems. It is divided into two sections, introduction to the electromechanical energy conversion process and the analysis of three-phase electrical systems. In the first section, electromagnetic systems are analyzed utilizing the law of conservation of energy to develop mathematical models to represent energy conversions from electrical to magnetic and magnetic to mechanical. These mathematical models are used to develop equivalent circuits to represent the electrical, magnetic and mechanical systems. In the second section on three-phase electromagnetic systems, the analysis of these systems is performed by utilizing their electric and magnetic equivalent circuits to produce the vector voltage and current phasors associated with the electromagnetic system. These vector voltages and current phasors are used to analyse the system and deduce and improve its performance.

SEMESTER: 1
COURSE CODE: ECNG 2000
COURSE TITLE: ELECTROMECHANICAL ENERGY CONVERSION SYSTEMS
NUMBER OF CREDITS: 3
PREREQUISITES: ECNG1000 ELECTRICAL CIRCUITS and ECNG1015 INTRODUCTION TO ELECTRICAL ENERGY SYSTEMS
COURSE DESCRIPTION: This course provides an introduction to the more common types of electrical machines for students, who, as engineers, will treat with electrical machines as a critical element of a system or subsystems. Electronic and mechanical drive systems, control systems and power systems depend on the functioning characteristics of electrical machines. This course will provide the depth necessary for students requiring a comprehensive understanding of the steadystate behaviour of the basic electrical machines. The principles of operation, steady state analysis and application of four machines, in particular, will be discussed. These are transformers, three-phase induction motors, synchronous machines and DC machines.

SEMESTER: 1
COURSE CODE: ECNG 2004
COURSE TITLE: LABORATORY & PROJECT DESIGN II
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
COURSE DESCRIPTION: This course is the second in a series of Laboratory and Project Design courses. It consists of laboratory exercises to demonstrate the principles presented in ECNG 1014 Digital Electronics and ECNG 2012 Electronics and Instrumentation. The knowledge gained in these two courses, together with the principles demonstrated in the laboratory exercises would then be utilised in a project to design and fabricate an electronic system to meet quality, safety, and environmental standards, and take industry performance parameter requirements and legal issues into consideration.

SEMESTER: 2
COURSE CODE: ECNG 2005
COURSE TITLE: LABORATORY & PROJECT DESIGN III
NUMBER OF CREDITS: 3
PREREQUISITES: NONE
COURSE DESCRIPTION: This course is the last in a series of Laboratory and Project Design courses. It consists of laboratory exercises to demonstrate the principles presented in Communication Systems
(ECNG 2001, Introduction to Microprocessors (ECNG 2006) and Control Systems (ECNG 2009). The knowledge gained in these courses, together with the principles demonstrated in the laboratory exercises would then be utilised in a project to design and fabricate a system to solve an industrial problem. The project must meet quality, safety, and environmental standards, and take industry performance parameter requirements and legal issues into consideration, while utilising project planning and time management techniques. This course also includes a group project, which builds team skills. This project aims to meet a socioeconomic need of a particular community.

SEMESTER: 2
COURSE CODE: ECNG2009
COURSE TITLE: CONTROL SYSTEMS
NUMBER OF CREDITS: 3
PREREQUISITES: ELNG1101 and ENGR1180
Course Description: The area of automatic control involves the use of procedures and strategies for forcing dynamic systems to behave in a specified fashion. We are all directly engaged in the control of dynamic systems on a continual basis – consciously or otherwise. For example, driving requires control of both direction and speed of an automobile; effective walking and running requires control of direction, speed and balance; our body systems control body parameters such as heart-rate, blood-pressure, temperature etc. with little conscious intervention. This course uses what is termed the “classical or frequency domain” approach to control systems design. The techniques borrow heavily from the telecommunications industry of the early 1920’s when engineers like Bode and others developed frequency response methods for solving problems encountered in the design of equalisers and amplifiers for long distance communication over the transatlantic cable. This course emphasises industrial application of theoretical concepts. Students require a good grasp of signals and systems theory as well as mathematics to successfully navigate this course.

SEMESTER: 2
COURSE CODE: ECNG3013
COURSE TITLE: ELECTRICAL TRANSMISSION AND DISTRIBUTION SYSTEMS
NUMBER OF CREDITS: 3
PREREQUISITES: ECNG3015
Course Description: This is a 3 credit mandatory course for the students who opt for the Energy Systems option. The current energy systems offering focuses on the generation of electricity and the general health of the system. This course addresses the void existing in the engineering analysis and the application of technology to the transmission and distribution area. The course is divided into 33 lecture and 6 tutorial one hour sessions. There will also be three research papers/projects and a mid-semester exam.

SEMESTER: 1
COURSE CODE: ECNG3015
COURSE TITLE: INDUSTRIAL AND COMMERCIAL ELECTRICAL SYSTEMS
NUMBER OF CREDITS: 3
PREREQUISITES: ECNG 2000
Course Description: This is a 3 credit compulsory course for all students in the Electrical and Computer Engineering Department. This course provides all the knowledge required to analyse an industrial power network from determination of the design ratings of equipment to the setting of protection relays. Human safety issues, in the handling of electrical equipment, are emphasised in all the topics covered. Topics delivered in the course are all linked as all topics depend on theory delivered in the previous topics. All topics are done by first delivering the required theory and then the application of the theory to a typical industrial design problem. This course is divided into 34 lecture and 5 tutorial sessions, each of one hour duration. Evaluation is done through 4 investigative laboratory experiments, a maximum of 5 take-home assignments, a mid-term exam and a final exam.

SEMESTER: N/A (1 YEAR)
COURSE CODE: ECNG3020
COURSE TITLE: SPECIAL ENGINEERING PROJECT
NUMBER OF CREDITS: 6
PREREQUISITES: ELET2405, ELET2415 and at LEVEL 3
Course Description: The ECNG 3020-Special Project is regarded as the capstone course of the entire BSc Engineering Programme. ECNG 3020 is a student-driven, research and development project. Monthly seminars, intended to support the student
in the research process are held and students are assessed by a final project submission and dissertation presentation. The course is year-long and counts for 6 credits and contributes 20% of the final weighted average used in the determination of honours. ECNG 3020 Special Project is designed to develop technical skills in the following areas: Design to specification; Formulation of creative solutions to engineering problems; Engineering analysis and enquiry; Validation and testing against benchmarks; Project management; Time management; and Communication. ECNG 3020 presents the opportunity to build upon the core of engineering skills gained in the earlier years and to broaden the scope of knowledge already gained. Project details are provided in a Project Handbook.

SEMESTER: 1
COURSE CODE: ECNG3021
COURSE TITLE: INTRODUCTION TO ENGINEERING MANAGEMENT AND ACCOUNTING SYSTEMS
NUMBER OF CREDITS: 4
PREREQUISITES: at LEVEL 3
Course Description: This course provides final year engineering students with a background in management and accounting skills to equip them to function in the business world. It provides a working understanding of the main elements of the successful planning, operation and control of industries and businesses as they relate to the following essential areas: Accounting and Finance; Management and Organizational Theory; Project Management, Production Planning and Control Techniques; and Introduction to Business Law. The course is loaded with examples of its applications in engineering firms and industries.

Course Descriptions: ELECTRONICS (MONA)

SEMESTER: 2
COURSE CODE: ELET1400
COURSE TITLE: INTRODUCTION TO ELECTRONICS
NUMBER OF CREDITS: 3
Course Description: Introduction to Semiconductor Theory and the P-N Junction: Review of the atomic structure and bonding; Energy level diagrams; Intrinsic and Extrinsic semiconductors; Electrical properties; the Fermi Dirac Distribution function; The P-N Junction and the diode; light emitting diodes (LED); The Bipolar Junction Transistor (BJT); the Field Effect transistor; Biasing the transistor circuit; DC Transistor circuits. Introduction to Digital Electronics: Analog and digital concepts; binary digits and logic levels; digital waveforms; logic gates and truth tables; Boolean algebra and logic simplification; DeMorgan’s theorem; Circuit minimization; Terminologies used in logic designs; Combinational logic circuits: BCD; Latches, Flip-Flops; Memory circuits and devices; Simple programmable arrays: ADC and DAC Circuits. Introduction to Analog Electronics and Communication Systems: Introduction to alternating current (AC); Frequency dependent RLC circuits; Bandwidth and half-power. The Operational Amplifier and its applications; Fundamentals of analog and digital Communication Systems; Noise and its effect on communication systems.

SEMESTER: 1
COURSE CODE: ELET2405
COURSE TITLE: PRACTICES IN ELECTRONICS DESIGNS I
NUMBER OF CREDITS: 3
PREREQUISITES: ELNG1101, ELET1400 AND ELET1405
Course Description: Investigative labs (30%): Six lab exercises will be assigned that are consistent with the electronics courses that the student has undertaken for semester 1. A report of the results, analyses and discussions must be handed in at the end of each lab session. A Design Project (70%): An electronics design project based on the application of digital circuits and embedded systems will be assigned. In addition to working on their project during the assigned lab sessions, students are also expected to do the necessary background/research work outside of classes. A complete project report and demonstration of prototype will be individually presented at the end of the semester.

SEMESTER: 2
COURSE CODE: ELET2410
COURSE TITLE: ANALYSIS AND DESIGN OF ANALOGUE CIRCUITS
NUMBER OF CREDITS: 3
PREREQUISITES: ELNG1101 and ELET1400
Course Description: The purpose of this course is to introduce the student to the fundamentals of the analysis and design of analogue circuits. It continues on the basic concepts of operational amplifiers, diodes and DC transistor circuits that were explored in ELET1400. Topics to be covered include circuit application of solid state devices to the designs of various diode and transistor circuits. The differential amplifier and its use in the design of operational amplifiers are discussed. The students are also introduced to the functional operation of commonly used linear ICs along with the basic concepts of oscillations. The course ends with some examples of data conversion circuits that demonstrate the operational relationships between analog and digital circuits. The use of manufacturers’ data sheets for the design of analog circuits is an integral part of this course. The learning experience is enhanced with computer-based exercises and assignments. SPICE simulation tools will be used throughout this course.

SEMESTER: 2
COURSE CODE: ELET2415
COURSE TITLE: PRACTICES IN ELECTRONICS DESIGNS II
NUMBER OF CREDITS: 3
PREREQUISITES: ELNG1101, ELET1400 AND ELET1405
Course Description: Investigative labs (30%): Six lab exercises will be assigned that are consistent with the electronics courses that the student has undertaken for semester 2. A report of the results, analyses and discussions must be handed in at the end of each lab session. A Design Project (70%): An electronics design project based on the application of analogue circuits and communication systems will be assigned. In addition to working on their project during the assigned lab sessions, students are also expected to do the necessary background/research work outside of classes. A complete project report and demonstration of prototype will be individually presented at the end of the semester.

SEMESTER: 2
COURSE CODE: ELET2420
COURSE TITLE: SEMICONDUCTOR DEVICES
NUMBER OF CREDITS: 3
PREREQUISITES: ELNG1101 and ELET1400
Course Description: This course provides the basic foundation for understanding electronic semiconductor devices and their circuit applications and limitations. It has introductory elements of quantum mechanics as a requirement for understanding the dynamics of the behavior of charge carriers and energy distributions within a semiconductor lattice and across p-n junctions. As such, reasonably strong mathematical and electrical field theory backgrounds are required – as obtained from the prerequisites. The three fundamental areas of semiconductor devices; semiconductor theory, p-n junction devices and field effect devices, are adequately covered in this course. The learning experience is enhanced with computer-based exercises and assignments. Math lab and SPICE simulation tools will be used throughout this course.

SEMESTER: 1
COURSE CODE: ELET2430
COURSE TITLE: DIGITAL CIRCUITS AND MICROPROCESSORS
NUMBER OF CREDITS: 3
PREREQUISITES: ELNG1101 and ELET1400
Course Description: The main objective of this course is to familiarize students with digital circuits and systems and in particular, the internal designs and operations of microprocessors, including Reduced Instruction Set computers (RISC) and Complex Instruction Set Computers (CISC). The course starts with a review of Flip flops and its application to counters, shift registers, memory architectures and arrays, and state diagrams. Basic processor designs will be covered, including Sequential Logic and Memory Design. Having set a good foundation, advanced processing techniques such as Microprogramming, Cache Memory Management and an introduction to parallelism will be covered.

SEMESTER: 1
COURSE CODE: ELET2450
COURSE TITLE: EMBEDDED SYSTEMS
NUMBER OF CREDITS: 3
PREREQUISITES: ELNG1101 and ELET1400
Course Description: The goal of this course is to provide students with an understanding of the inner workings of embedded system solutions and the underlining technology, which include the development of circuits and embedded software programs. It exposes students to the structure and component of embedded controllers and the tools necessary for the development of embedded systems solutions. Students will also be exposed to the design and implementation processes of embedded system solutions. In
addition, students will develop the skills necessary to construct circuits and design algorithms to interface devices such as modem, GPS receivers, LCD and other input/output devices with a microcontroller based embedded system.

SEMESTER: 1
COURSE CODE: ELET2460
COURSE TITLE: SIGNALS AND SYSTEMS
NUMBER OF CREDITS: 3
PREREQUISITES: ELNG1101 and ELET1400
Course Description: This course is concerned with predicting and analyzing the response of linear time invariant (LTI) systems when certain signals such as the unit impulse. The unit step and the sinusoid, are furnished as inputs. Transfer function models of LTI systems will be developed and analyzed using a number of powerful techniques based on the Laplace Transform and the Fourier Transform. These techniques will also be used extensively in other engineering courses, for example telecommunications, control systems and signal processing. To enhance the learning experience, MATLAB will be used to explore some of the concepts discussed and to verify some of the predictions.

SEMESTER: 2
COURSE CODE: ELET2480
COURSE TITLE: MODERN COMMUNICATION SYSTEMS
NUMBER OF CREDITS: 3
PREREQUISITES: ELNG1101 and ELET1400
Course Description: This course seeks to familiarize students with the basic foundations of communications systems, covering the concepts from signal preparations, signal transmission, and signal reception of both digital and analog systems. It specifically deals with analog and digital modulation techniques, transmission of the signal across a carrier, and the acquisition and demodulation of these signals. This leads to an introduction to modern technologies such as wireless transmission, GNSS systems, cellular technology and GSM.

SEMESTER: 1
COURSE CODE: ELET3405
COURSE TITLE: PRACTICAL ANALYSIS OF ADVANCED ELECTRONIC CIRCUIT AND SYSTEMS
NUMBER OF CREDITS: 3
PREREQUISITES: ELET2405 and ELET2415
Course Description: This course is divided into three main sections. Section 1 will run for the first 5 weeks of the semester and will expose students to general troubleshooting and problem solving techniques for advanced electronics circuits and systems. Sections 2 and 3 will run concurrently for the remainder of semester and are strongly focused on problem solving and effective troubleshooting of circuits and systems for telecommunication and for instrumentation and control, respectively. Manufacturers’ datasheets, schematic diagrams, systems design specifications and operation and service manuals will be provided. Students are required to use this information along with their knowledge of electronic circuits and systems designs to implement effective repairs or redesigns. Although fixed 4-hour sessions are timetabled each week students are encouraged to use the open lab hours to work on their assigned weekly task. Students will be normally required to complete two sections - Section 1 and either Section 2 or Section 3 depending of their area of specialization (telecommunication or industrial automation).

SEMESTER: 1
COURSE CODE: ELET3430
COURSE TITLE: INSTRUMENTATION AND MEASUREMENTS
NUMBER OF CREDITS: 3
PREREQUISITES: ELET2410 and ELET2430 or ELET2460
Course Description: In modern measurement processes, the parameter to be measured is sensed and converted to an electrical signal for processing and display. The apparatus and methods used to perform this task include the use of a wide range of transducers and conditioning circuits that are usually interface to computers for final signal processing and display. This course highlights this measurement process and the design and operation of the electronic circuit and systems that enable it. In depth analyses of the physics of the operation of sensors and their interfaces to analogue and digital electronic circuits will be studied. Examples of Industrial measurement systems will be discussed with particular attention to their design details. Students will be exposed to the real world instrumentation and measurement system during their industrial case study sessions. This aspect of the course has proven to be very informative and eye-opening for the students creating high motivation levels and increased interest.
SEMESTER: 2
COURSE CODE: ELET3440
COURSE TITLE: INTRODUCTION TO ROBOTICS
NUMBER OF CREDITS: 3
PREREQUISITES: ELET2450 and ELET2430
Course Description: This course introduces students to the field of robotics and its applications in today's technologically advanced society. In addition it covers the different components that constitute a robot, its operation and how it fits together to form a complete system. The course also investigates and discusses the use of robot technology in several areas of application. Specific topics covered include embedded controllers, sensors, actuators, wireless communication and mobile robots design and application.

SEMESTER: 2
COURSE CODE: ELET3450
COURSE TITLE: SATELLITE COMUNICATI
NUMBER OF CREDITS: 3
PREREQUISITES: ELET2480
Course Description: This course is made up of two Sections: Section I, “Satellite Communication,” introduces students to the fundamental communications principles behind current state-of-the-art satellite communications systems. Section II, “Global Navigational Satellite Systems (GNSS),” provides an overview of the principles of operation of satellite navigation systems with primary emphasis on the U.S. Global Positioning System (GPS).

SEMESTER: 1
COURSE CODE: ELET3460
COURSE TITLE: DIGITAL SIGNAL AND IMAGE PROCESSING
NUMBER OF CREDITS: 3
PREREQUISITES: ELET2460
Course Description: This course reviews the basics of DSP – building on the fundamentals taught in ELET2460 – before moving to more advanced concepts of signal processing. In the first part of the course the students will be taken through the processes required for digital filter design, starting with the basic methods and moving on to more sophisticated techniques. Digital imaging processing will be covered in the second module. The tools and techniques employed in basic image processing (compression and de-noising) will be addressed; this will provide the student with the capacity to grasp the more complex concepts and techniques employed in modern image processing applications.

Given that DSP is essentially about the manipulation of real-world signals, the tools, techniques and approaches to problem-solving taught in this course can be applied in disparate fields, from telecommunications to medical imaging, video and audio processing for law enforcement, to investment banking.

SEMESTER: 1
COURSE CODE: ELET3470
COURSE TITLE: WAVE TRANSMISSION AND FIBER OPTICS
NUMBER OF CREDITS: 3
PREREQUISITES: ELET2480
Course Description: This course starts with coverage of the basic background in electromagnetic theory that is required for understanding the behavior of waves in various mediums. It continues with the fundamentals of wave propagation and waveguiding of all kinds; the essentials of propagation along optical fibers; and the concepts underlying integrated optics systems. It details the theoretical analyses of various transmission line including twisted wire pairs, coaxial cables, and traces on printed circuits boards. A study of antennas and their interfacing to transmission line is included. A thorough analysis is done on the theory of fiber optic and dielectric transmission medium with extended discussions on their practical application. Finally practical fiber optic communication system, its signals and its components are studied.
SEMESTER: 1
COURSE CODE: ELET3480
COURSE TITLE: WIRELESS COMMUNICATION
NUMBER OF CREDITS: 3
PREREQUISITES: ELET2480
Course Description: This course offers a definitive professional's overview of wireless communications technology and system design. Virtually every important new wireless standard and technological development, including W-CDMA, cdma2000, UMTS, and UMC 136/EDGE; IEEE 802.11 and HIPERLAN WLANs; Bluetooth, LMDS, and more, have been reviewed. The technologies and applications that drive the development of 2G, 2.5G, and 3G systems are explored. An overview of the 4G technologies is presented.

Course Descriptions: ELECTRONICS ENGINEERING (MONA)

SEMESTER: 1 and 2
COURSE CODE: ELNG1101
COURSE TITLE: PHYSICS FOR ENGINEERS
NUMBER OF CREDITS: 3
Course Description: This is calculus-based course covering the basic laws and phenomena in electricity and magnetism, oscillation and waves, rotational mechanics and modern Physics. It revises and expands on selected areas of the CAPE Physics content so as to reinforce and expand the student understanding of the fundamental concepts and their application to solving engineering problems.

SEMESTER: 1
COURSE CODE: ELNG3030
COURSE TITLE: POWER ELECTRONICS AND PROTECTION CIRCUITS
NUMBER OF CREDITS: 3
PREREQUISITES: ELET2410 and ELET2420
Course Description: Power electronics refers to control and conversion of electrical power from one form to another by power semiconductor devices that are usually operate as switches. This course offers a comprehensive coverage of power electronic devices and circuits. It provides a basic knowledge of circuitry for the control and conversion of electrical power with high efficiency. It begins with the introduction of power semiconductor devices, their basic operations and characteristics. The required semiconductor physics background would have been covered in ELET2420 (semiconductor devices) which is a prerequisite for this course. The application of these devices to the design of controlled rectifiers, inverters, choppers, cyclo-converters, and dual converter circuits are presented. Typical commercial and industrial applications along with their waveform analyses are also discussed. These converters can change and regulate the voltage, current, or power; dc-dc converters, ac-dc rectifiers, dc-ac inverters, and ac-ac cyclo-converters are in common use. Several low and high power applications are included. All high power circuits require some form of cooling and protection from over-current and/or over-voltages. The components, circuit design techniques and application of several cooling and protection circuits are presented.

SEMESTER: 1
COURSE CODE: ELNG3040
COURSE TITLE: INDUSTRIAL AUTOMATION
NUMBER OF CREDITS: 3
PREREQUISITES: ECNG2009 and ELET2450
Course Description: This course provides the student with basic skills useful in identifying the concepts of automated machines and equipment and describes the terms and phrases associated with industrial automation. A range of automated control systems will be studied in depth with special emphasis on the use of ladder Logic and F- Logic for PLC programming. The industry standards
and protocols are covered. The design and operation of distributed control systems (DCS) is emphasized. The methods of programming for the various automated controllers are an integral part of this course. Examples of automation in selected industries are discussed to highlight the various applications of the automated systems. The practical component for this class will be covered in the advanced electronics lab course.

SEMESTER: 2
COURSE CODE: ELNG3050
COURSE TITLE: WIRELESS BROADBAND NETWORKS
NUMBER OF CREDITS: 3
PREREQUISITES: ELET3480
Course Description: This course starts with a description of the latest techniques in block based transmission with strong emphasis on Orthogonal Frequency Division Multiplexing (OFDM). Multiple input/output antennas systems with applications to ultra wideband systems are then analyzed. Access control and management to ensure quality data transmission is discussed. The introduction of WIMAX and LTE systems and standards are detailed as examples of 4G systems.

SEMESTER: 2
COURSE CODE: ELNG3060
COURSE TITLE: POWER PLANT INSTRUMENTATION
NUMBER OF CREDITS: 3
PREREQUISITES: ELET3430, ELNG3030 and ELNG3040
Course Description: This course provides a comprehensive study of the instruments that are used to measure and control the processes of electricity power generation. The student is first exposed to an in-depth analysis of the processes of controlling the generation of electricity from tradition fuel sources. This is followed by a study of the instrumentation and control aspects of alternative form of electricity generation. Special emphasis is made to sensitize students to the environmental impact of these systems. Design ethics and design for safety are embedded in this course. A Case study of specific application of instruments in the control processes of power plants is an integral part of this course.

Course Descriptions: FACULTY OF ENGINEERING (ST. AUGUSTINE)

SEMESTER: 1
COURSE CODE: ENGR1000
COURSE TITLE: INTRODUCTION TO ENGINEERING
NUMBER OF CREDITS: 3
Course Description: An introduction to the following: historical development of engineering; Formation of the engineer; Roles and functions of engineers and professional organizations; Creative and critical thinking; Technical Communication; Ethics; Liability; Safety; Legal forms of association; Contracts, Company law; Intellectual property; Engineering economics and business operations; infrastructure; energy systems and economics, environment and sustainable development; approaches to design. Field trips to local industries are an integral part of the course.

SEMESTER: 1
COURSE CODE: ENGR1180
COURSE TITLE: ENGINEERING MATHEMATICS 1
NUMBER OF CREDITS: 3
Course Description: Vectors: plane and space vectors, dot and cross product, vector equations of lines and planes. Elementary linear algebra: geometric interpretation of linear equations, Gaussian elimination, definition of a vector space, span and subspace, basis, dimension. Matrices: transpose, determinants, rank and its application to linear systems, matrix inversion by cofactors. Series: partial sums, comparison and ratio tests, Maclaurin and Taylor series. Complex numbers: definition and properties, complex roots of a quadratic equation, complex numbers as vectors, modulus and argument, products and quotients, De Moivre’s theorem, exponential form, hyperbolic functions, loci in the Argand diagram. Ordinary differential equations: definitions, direction fields,
linear first order differential equations, separable differential equations, modeling with first order equations, exact equations, numerical approximations, homogeneous second order equations with constant coefficients, fundamental solutions, complex and repeated roots of the characteristic equation, reduction of order, method of undetermined coefficients.

Course Descriptions: ELECTRICAL POWER ENGINEERING (MONA)

<table>
<thead>
<tr>
<th>SEMESTER:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE CODE:</td>
<td>EPNG2010</td>
</tr>
<tr>
<td>COURSE TITLE:</td>
<td>Nuclear Physics and Reactor Theory</td>
</tr>
<tr>
<td>NUMBER OF CREDITS:</td>
<td>3</td>
</tr>
<tr>
<td>PREREQUISITES:</td>
<td>ELNG1101 PHYSICS FOR ENGINEERS</td>
</tr>
<tr>
<td>COURSE DESCRIPTION:</td>
<td>This course introduces the basic concepts of atomic and nuclear physics, subatomic particles and the mechanisms involved in nuclear reactions. It establishes basic radiation safety principles and highlights the effects of radiation on the human body as well as introduces students to fundamental principles of nuclear reactor theory and operation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE CODE:</td>
<td>EPNG2020</td>
</tr>
<tr>
<td>COURSE TITLE:</td>
<td>Renewable Energy Systems</td>
</tr>
<tr>
<td>NUMBER OF CREDITS:</td>
<td>3</td>
</tr>
<tr>
<td>PREREQUISITES:</td>
<td>ECNG1000 ELECTRICAL CIRCUITS and ELNG1101 -PHYSICS FOR ENGINEERS</td>
</tr>
<tr>
<td>COURSE DESCRIPTION:</td>
<td>This course covers all the technologies available to produce electrical energy from renewable sources, including solar, wind, hydro, geothermal and biomass. The physics governing the operation of these devices will presented combined with the engineering application of monitoring, controlling and connecting to the electrical grid. Students will do engineering calculations of power and energy availability of renewable energy sources and learn about requirements for integrating renewable energy sources into production, distribution and end-use systems.</td>
</tr>
</tbody>
</table>

Course Descriptions: GEOMATICS AND GEOINFORMATICS (ST. AUGUSTINE)

<table>
<thead>
<tr>
<th>SEMESTER:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE CODE:</td>
<td>GEOM 2015</td>
</tr>
<tr>
<td>COURSE TITLE:</td>
<td>GEOMATICS FOR CIVIL & ENVIRONMENTAL ENGINEERS</td>
</tr>
<tr>
<td>NUMBER OF CREDITS:</td>
<td>3</td>
</tr>
<tr>
<td>PREREQUISITE:</td>
<td>NONE</td>
</tr>
</tbody>
</table>

SEMESTER: 2
COURSE CODE: GEOM 2017
COURSE TITLE: GEOINFORMATICS FOR CIVIL & ENVIRONMENTAL ENGINEERS
NUMBER OF CREDITS: 3
PREREQUISITE: NONE
COURSE DESCRIPTION: The principles of Geoinformatics techniques and their applications for typical problems in Civil and Environmental Engineering. Basics of aerial and satellite imageries; extraction of graphical and numerical data. Integrated approach for addressing Civil and Environmental Engineering problems using Geoinformatics.

Course Descriptions: INFORMATION TECHNOLOGY (MONA)

SEMESTER: 1
COURSE CODE: INFO2180
COURSE TITLE: DYNAMIC WEB DEVELOPMENT I
NUMBER OF CREDITS: 3
PREREQUISITES: COMP1126, COMP1127 and COMP1161
COURSE DESCRIPTION: This course covers the foundations of the technologies that enable the creation of interactive websites that process and modify server-based data. This includes fundamental networking technologies, data representation for the web, web UI design and site design, client-server architecture and client-side and server-side programming. It covers the fundamentals of ecommerce, web security, ethical and social issues, and relevant software engineering concepts such as the three-tier architecture and frameworks for the web. It also provides an introduction to mobile web issues and web multimedia.

SEMESTER: 2
COURSE CODE: INFO3155
COURSE TITLE: INFORMATION ASSURANCE AND SECURITY
NUMBER OF CREDITS: 3
PREREQUISITES: COMP2190 and (COMP2201 or INFO2100)
COURSE DESCRIPTION: Building upon the concepts introduced in Net-Centric Computing, this course explores the security issues that every IT professional must be aware of. The course will inform the student on the various attack surfaces and defensive approaches that must be considered during all phases of life of an organisation's information technology assets. The course will also provide an opportunity for students to gain hands-on experience with the tools needed to protect an organisation from the various forms of attack it can be subjected to.

Course Descriptions: MANAGEMENT STUDIES (MONA)

SEMESTER: 2
COURSE CODE: MGMT3136
COURSE TITLE: ENTREPRENEURSHIP AND NEW VENTURE CREATION
NUMBER OF CREDITS: 3
PREREQUISITES: at LEVEL 3
Course Description: This course deals with one of the most challenging issues confronting developing countries. It focuses on understanding and appreciating the entrepreneurial mindset in relation to the ability to create new ventures successfully. The course also focuses on “intrapreneurship” or the reinvigoration of existing enterprises with an attitude of innovation, responsiveness and receptivity to change, and it considers entrepreneurship in an international context.

Course Descriptions: MATHEMATICS (MONA)

SEMESTER: 1
COURSE CODE: MATH 2230
COURSE TITLE: ENGINEERING MATHEMATICS II
NUMBER OF CREDITS: 3
PREREQUISITES: ENGR1180
COURSE DESCRIPTION: Vector calculus: parametric curves and arc length, review of partial differentiation, vector fields, line integrals and double integrals, Green’s theorem, surface integrals, triple integrals and Divergence theorem. Laplace transforms: definition and existence of Laplace transforms, properties of Laplace transforms (linearity, inverse transform, shift formulae, Laplace transform of derivatives), applications and further properties of Laplace transforms (solving differential equations, convolution and integral equations, Dirac’s delta function, differentiation of transforms, Gamma function). Fourier series: definitions, convergence, even and odd functions, half range expansions. Partial differential equations: definitions, heat equation (derivation, solution by separation of variables, insulated ends as boundary conditions, nonhomogeneous boundary conditions), wave equation (derivation, solution by separation of variables), Laplace’s equation in Cartesian and polar coordinates.

SEMESTER: 2
COURSE CODE: MATH 2240
COURSE TITLE: STATISTICS
NUMBER OF CREDITS: 2
PREREQUISITES: ENGR1180
COURSE DESCRIPTION: Statistics and probability; frequency distribution, frequency polygons and histograms; introduction to probability; basic axioms; conditional probability, Bayes theorem, mutual independence; introduction to random variables; probability distribution, Bernoulli trials, the binomial distribution and the Poisson distribution; probability density and mass functions of a continuous random variable; expectation and variance; the exponential and normal distributions; distributions of sample means; point estimates; confidence intervals; statistical inference - tests of significance; linear regression.

Course Descriptions: PHYSICS (MONA)

SEMESTER: 2
COURSE CODE: PHYS3385
COURSE TITLE: ELECTROMAGNETISM
NUMBER OF CREDITS: 3
PREREQUISITES: ELENG1101 and MATH2230