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ABSTRACT 

Objective: To prove the effectiveness and feasibility of a paclitaxel hirudin complex and to provide 

experimental data on the prevention of restenosis, we investigated the effects of paclitaxel hirudin 

complexes on the growth of human coronary artery smooth muscle cells (HCASMCs) and endothelial 

cells (HCAECs) in vitro. 

Methods: HCASMCs and HCAECs were co-incubated with different concentrations of hirudin. Cell 

viability was assessed using methylthiazoletetrazolium (MTT) assays to determine the optimal 

concentration range for inhibiting the growth of HCASMCs but not that of HCAECs. Then, cells were 

incubated with hirudin within the optimal concentration range combined with 1 μmol/L paclitaxel.  

Results: Hirudin at 0.2-3.13 mg/mL significantly inhibited the growth of HCASMC (p < 0.05) but not 

HCAEC (p > 0.05) compared to the control group. This range of hirudin complexed with 1 µmol/L 

paclitaxel noticeably inhibited the growth of HCASMC (p < 0.05). Moreover, 1 μmol/L 

paclitaxel+0.39 mg/mL hirudin noticeably decreased the inhibition ratio of the growth of HCAECs 

compared with the paclitaxel only group (p < 0.05). The complex of 1 μmol/L paclitaxel plus 0.39 

mg/mL hirudin can maximize the inhibition of HCASMCs and minimum the inhibition of HCAECs.   

Conclusions: The results of this study may provide reference data for the subsequent development of 

natural herb-eluting stents. 
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INTRODUCTION 

Atherosclerotic cardiovascular disease (ASCVD) is a major cause of death and seriously 

imperils human health (1). Percutaneous coronary intervention (PCI) is an important recent 

breakthrough in revascularizing occluded coronaries, and drug-eluting stents (DESs) have 

been widely used in the interventional treatment of ASCVD with significant anti-restenosis 

effect (2). However, the long-term outcome of DES treatment of ASCVD cannot be reliably 

judged. There is a 10%-20% DES restenosis rate after DES treatment (3). In partial DES 

treatments, the incidence of major adverse cardiac events was not decreased, and late stent 

thrombosis is a devastating complication that greatly limits the long-term curative effect of 

DESs (4, 5). 

  Restenosis caused by over-healing after percutaneous coronary revascularization is 

the major obstacle in the development of PCI (6). Randomized clinical and experimental 

studies have confirmed that exaggerated neointimal thickening and muscle cell transfer 

induced by vascular injury caused by the intervention process are the main pathological 

characteristics of restenosis after PCI (7-9). Compared with bare-metal stents (BMSs), DESs 

reduce the clinical restenosis rate significantly by inhibiting intimal neoproliferation (10). 

However, this effect is associated with delayed or deficient re-endothelialization, and the 

neointimal coverage is closely related to the intrastent restenosis and thrombosis (11). The 

chemical ingredients loaded on the drug-eluting stents are less selective. Chemical 

ingredients may not only suppress the proliferation of vascular smooth muscle cells (VSMCs) 

but also inhibit re-endothelialization of the wound site, causing delayed healing and in-stent 

thrombosis (12). Therefore, seeking a way to minimize the incidence of in-stent restenosis 

and to avoid late thrombotic complications is a subject of interest. 

   Natural herbs are a newer research focus in drug-eluting stent methods. Several 

herbal active ingredients, such as hirudin, ligustrazine, emodin, allicin, celastrol and salvia 
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miltiorrhiza, loaded on drug-eluting stents have good biocompatibility as well as 

anti-proliferative and anti-thrombotic effects (13). Among these effective monomers of 

natural herbs, hirudin, with a unique antithrombotic effect, attracted our attention. 

  An extract of leech saliva, hirudin is a direct thrombin inhibitor, unlike heparin. Its 

role in the inhibition or inactivation of thrombin is not dependent on antithrombin III, heparin 

cofactor II, protein C or tissue factor pathway inhibitor. Hirudin is not inactivated by platelet 

combination and can inhibit thrombin-induced platelet aggregation. Hirudin has good 

anti-coagulant and antithrombotic effects (14, 15). Hirudin could effectively inhibit the 

hyperplasia of smooth muscle cells (SMCs) in the arterial intima and significantly reduce the 

intima thickness and the incidence of restenosis after transluminal angioplasty (TA).  

  Hirudin may also play a role in the prevention of restenosis after TA (16). Hirudin 

inhibits tritiated thymidine (3H-TdR) incorporation and the proliferation and migration of 

cultured rabbit aortic SMCs in a concentration-dependent manner (17). Hirudin can be used 

to prevent restenosis after PCI and has promising prospects in the future (18-20). However, 

because the components of herbs are complex, the exact effects of selected natural herbal 

monomers on anti-proliferation and protection against vascular endothelial function are 

unclear. The effects of a single drug (i.e., hirudin) on the growth of human vascular cells are 

seldom reported. Most related experimental models are animal cells, and intervention studies 

of natural herbs on human coronary arteries are rare.  

    A new biodegradable stent coated with hirudin and the prostacyclin analogue 

iloprost can inhibit neointima formation and reduce the risk of clots after experimental 

coronary artery stenting (21-23). Two or more compounds may reduce in-stent restenosis and 

prevent thrombosis more effectively, and the use of the combination of hirudin and other 

anti-proliferative drugs in preparing drug-coated stents is feasible. We proposed a strategy for 

amplifying the advantages of hirudin and enhancing efficiency by combining hirudin with a 
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natural herb monomer that had a good anti-proliferative effect on SMCs but could not protect 

endothelial cells.  

  On the basis of these hypotheses, combined with the latest research progress, we 

chose paclitaxel and hirudin to prepare the compound. The purpose of this study was to 

obtain the appropriate ratio of paclitaxel to hirudin to provide experimental data and new 

hypotheses for the research and development of natural herb-eluting stents. 

 

 

MATERIALS AND METHODS 

Materials and reagents 

Human coronary artery smooth muscle cells (HCASMCs) and endothelial cells (HCAECs), 

HCASMC and HCAEC media, Trypsin EDTA, Trypsin Neutralizing Solution, and FrostaLife 

Cryopreservation were purchased from Lifeline Corporation, Carlsbad, CA, USA. 

Phosphate-buffered saline (PBS), methyl thiazolyl tetrazolium (MTT), and dimethylsulfoxide 

(DMSO) were purchased from Beijing Solarbio Science & Technology Co., Ltd., Beijing, 

China. The paclitaxel storage solution was obtained from Nanjing KeyGEN Biotech. Co., 

Ltd., Nanjing, China. Scientific grade natural lyophilizing hirudin powder (500 AT-U/g) was 

purchased from Wuhan Shengtianyu Biological Science and Technology Co., Ltd., China. 

HCASMC and HCAEC cultures  

Frozen aliquots of cells were obtained from liquid nitrogen storage and immediately thawed 

at 37 °C. The cells were injected into a 25-cm3 culture bottle and cultivated in an incubator 

containing 95% O2 and 5% CO2 at 37 °C. The medium was replaced every two days. The 

cells were passaged every 3 to 4 days. The cells were used in the following experiments at 

passage 4 or 5. 

Determination of the optimal concentration range of hirudin 

http://dict.cn/Methyl%20thiazolyl%20tetrazolium%20assay%20(MTT)
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Grouping  

The cells were divided into a zero-adjustment group (one well without cells), a control group 

(cells were cultured normally without stimulation in five wells), and the drug 

intervention groups at different doses (0.025, 0.05, 0.1, 0.2, 0.39, 0.78, 1.56, 3.13, and 6.25 

mg/mL) (24). Six replicates were performed for each experimental group. 

Cell inoculation 

HCASMCs and HCAECs at 70%-80% confluency were digested into single-cell suspensions, 

and the cell density was adjusted to 8×104/mL. The cells were subsequently seeded onto 

96-well plates. Cell suspensions (100 μL) were added to each well, except that only culture 

medium was placed in the zero-adjustment well. The medium was replaced daily. 

Subsequently, 0.05 mL of the cell suspension was mixed with 0.05 mL of trypan blue for 

staining. The cell viability by this method was 95%. 

Drug stimulation  

The cells were washed twice with PBS. Then, 100 μL of basic culture medium was added to 

the zero-adjustment well and control group wells, and 100 μL of hirudin at different 

concentrations was added to the drug intervention groups. The cells were cultivated in an 

incubator containing 95% O2 and 5% CO2 at 37 °C for 48 h. 

Evaluation of cell viability  

The MTT method was used to assess the cell viability according to the literature (25). After 

co-incubation for 48 h, 20 μL of MTT solution was added to each well. Subsequently, the 

supernatant was discarded, and 150 μL DMSO was added. The cells were gently oscillated 

for 10 min. Cell viability was read at 492 nm using an enzyme-labeled instrument. The 

inhibition rate of each group was calculated based on the following formula: 

Inhibition rate (IR) = (1-A492 nm of experimental group/A492 nm of control group) × 100%. 

Based on the inhibition rates of the groups, an optimal concentration range of hirudin was 
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determined. 

Determination of the inhibitory effects of different ratios of the complexes  

Grouping  

To prepare the paclitaxel+hirudin complexes, 1 μmol/L paclitaxel (26) was added to various 

hirudin solutions within the optimal concentration range. The cells were co-incubated with 

different paclitaxel+hirudin complexes in 96-well culture plates, and six replicates were 

arranged in a separate well for each dose group. The first 5 wells contained culture medium 

as the control group, and the remaining well was the zero-adjustment group. The second 6 

wells contained paclitaxel only and are identified as the paclitaxel only group. 

Cell inoculation and drug stimulation  

Cell inoculation was performed according to the method described above. The cells were 

washed twice with PBS every day, and 100 μL of basic culture medium was added to the 

zero-adjustment well and control group wells. Then, 100 μL of paclitaxel (1 μmol/L) was 

added to the paclitaxel only group. First, 50 μL of paclitaxel (2 μmol/L) was added to the 

drug intervention groups with different doses. Then, 50 μL of hirudin with the double dose 

was added. The cells were then cultivated in an incubator containing 95% O2 and 5% CO2 at 

37 °C for 48 h. 

Evaluation of cell viability  

The change in cell growth activity was detected using the MTT colorimetric method to 

observe the state of normally cultured HCASMCs and HCAECs that were treated with 

paclitaxel+hirudin complexes at different concentrations. The appropriate ratio of paclitaxel 

to hirudin to maximize the inhibition of HCASMCs while minimizing the inhibition of 

HCAECs was then determined. 

Statistical analyses  

The data are expressed as the means ± SEM. The statistical evaluation was performed using 
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SPSS17.0 software. The statistical comparisons were performed using a one-way analysis of 

variance (ANOVA). Dunn’s method was used to discriminate the differences among different 

groups. P<0.05 was considered to be statistically significant. 

 

 

RESULTS 

Cell culture in vitro  

Under the inverted microscope, newly recovered HCASMCs and HCAECs were small, round 

and floating in the medium in a non-adherent state. Most of the cells were separated from 

each other or agglomerated. After a 6-h cultivation, the majority of the cells gradually 

attached to the bottom; all of the cells were completely attached to the bottom after 24 h. The 

shape of the attached HCASMCs gradually changed into a spindle, with good stretching and 

diaphaneity. In 3 days, the cells entered the logarithmic growth phase, with a dense bundle 

arrangement and overlapping (Figures 1 A and B). The attached HCAECs were transformed 

into a confluent single layer and then entered the logarithmic growth phase in 4 days. The cell 

body was plump and transparent with a rhombic or polygonal shape, in a “slabstone” 

arrangement (Figures 1 C and D). 

 

 

Optimal concentration range of hirudin  

On the growth of HCASMCs 

Under the inverted microscope, newly inoculated HCASMC were small, round, and floating 

in the medium. In 2 h, the shape of the attached cells gradually changed into a spindle shape. 

In 48 h, the cells entered the logarithmic growth phase with a dense bundle arrangement and 

overlapped each other. There was no obvious change in cell morphology or quantity after 
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48-h stimulation with a low dose of hirudin (0.025-0.1 mg/mL). After a 24-h stimulation with 

medium and high doses of hirudin (0.39-6.25 mg/mL), the cell morphology was slightly 

different. After 48 h, the quantity of cells was reduced, and the arrangement became loose. 

At 48 h after stimulation, compared to the control group, low-dose hirudin (0.025-0.1 mg/mL) 

did not noticeably inhibit the growth of HCASMCs (P>0.05). The medium and high doses of 

hirudin (0.2-6.25 mg/mL) obviously inhibited the growth of HCASMCs (P<0.05), and the 

inhibitory rate increased with the increase in the hirudin concentration (Table 1, Figure 2). 

On the growth of HCAECs 

Under the inverted microscope, newly inoculated HCAECs were round and floating in the 

medium. Most of the cells were separated from each other or agglomerated. At 2 h, the 

majority of cells gradually attached to the bottom, and all of the cells were completely 

attached to the bottom at 24 h after stimulation. The “slabstone” arrangement appeared within 

48 h. There were no obvious changes in cell morphology or quantity. The cells formed a 

confluent single layer after 48-h stimulation with low and medium doses of hirudin 

(0.025-3.13 mg/mL). After 48-h stimulation with a high dose of hirudin (6.25 mg/mL), the 

quantity of cells was reduced, and partially attached cells dropped from the well walls. 

  At 48 h after stimulation, compared to the control group, the 0.025-3.13 mg/mL 

hirudin treatments did not noticeably inhibit the growth of HCAECs (P>0.05). Hirudin at 

6.25 mg/mL obviously inhibited the growth of HCAECs (P<0.05), and 0.05-0.2 mg/mL of 

hirudin increased the growth of HCAECs (Table 2, Figure 2). Based on these results, we 

chose the low dose of hirudin (0.2-3.13 mg/mL) as the optimal concentration range that could 

inhibit the growth of HCASMCs and increase the growth of HCAECs. 

Inhibitory effects of the complexes 

On HCASMCs  

Under the inverted microscope, HCASMCs in the logarithmic growth stage overlapped and 
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were in a dense bundle arrangement. After drug stimulation for 48 h, both paclitaxel only and 

various doses of paclitaxel+hirudin complexes decreased the number of cells and loosened 

the cell arrangement. The degree of change was positively associated with the hirudin 

concentration. 

  Compared to the control group, paclitaxel only and various doses of 

paclitaxel+hirudin complexes noticeably inhibited the growth of HCASMCs (P<0.05). 

Compared with paclitaxel only, various doses of paclitaxel+hirudin complexes increased the 

growth inhibition of HCASMCs (P<0.05). The complexes had higher inhibition rates than 

paclitaxel only (P<0.05), but the inhibitory rate did not increase with the increase in the 

hirudin concentration (Table 3, Figure 3). 

On HCAECs  

Under the inverted microscope, HCAECs in the logarithmic growth were arranged in a 

“slabstone” pattern. After drug stimulation for 48 h, both paclitaxel only and various doses of 

paclitaxel+hirudin complexes reduced the quantity of cells and loosened the cell arrangement. 

Partial cells were observed floating in the medium and could not be attached to the bottoms 

of wells. 

  Compared to the control group, paclitaxel only and various doses of the 

paclitaxel+hirudin complexes noticeably inhibited the growth of HCASMCs (P<0.05). 

Compared with paclitaxel only, paclitaxel+0.39 mg/mL hirudin and paclitaxel+0.78 mg/mL 

hirudin significantly decreased the growth inhibition HCAECs (P<0.05), but the inhibitory 

rate did not increase with the increase in the concentration of the complexes (Table 4, Figure 

3). 

 

 

DISCUSSION 
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The restenosis rate of 10%-20% after DES treatment of ASCVD remains a challenge for 

clinicians (3). Proliferation and migration of VSMCs and delayed endothelialization are 

believed to be the main pathological causes of in-stent restenosis (27). The results of this 

study revealed that paclitaxel hirudin complexes had a higher inhibition rate than the 

paclitaxel only treatment, suggesting that natural herbs have the capacity to enhance 

pharmacological effects. Moreover, the appropriate ratio of the paclitaxel+hirudin complex (1 

μmol/L paclitaxel+0.39 mg/mL hirudin) could decrease the growth inhibition of HCAECs 

and maximize the inhibition of HCASMCs, suggesting that natural herbs have the capacity to 

reduce the poison effects. Thus, the compatibility of paclitaxel and hirudin could effectively 

reduce the negative effects caused by the single drug. This study provides experimental data 

for the prevention of restenosis after DES treatment and proposes a new idea for the research 

and development of drug-eluting stents. 

  DES intervenes in the pathological process of restenosis to target lesions locally, and 

its good effects have been shown in many animal models and clinical studies (28, 29). 

Pharmacological inhibitors of neointimal hyperplasia, such as paclitaxel, are commercially 

available agents. Paclitaxel is a derivatized diterpenoid that exerts an antineoplastic effect by 

interfering with cell microtubule function. Paclitaxel alters the dynamic equilibrium among 

microtubules and α- and β-tubulin by favoring the formation of abnormally stable 

microtubules, which leads to the inhibition of cell division and migration, intracellular 

signaling, and protein secretion, which rely on the rapid and efficient depolymerization of 

microtubules (30-32). However, microtubules, the major components of cytoskeleton proteins, 

also usually are found in HCAECs. Although the paclitaxel stent can inhibit the migration 

and proliferation of VSMCs and can contribute to neointimal hyperplasia, it can also delay 

the re-endothelialization of the intima, with the potential risk of late thrombosis (33-36). The 

results of the aspirin-induced platelet effect test on paclitaxel-eluting stents showed that the 
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occurrence of sub-acute thrombosis in the high-dose paclitaxel group (3.1 μg/m2) was 2%, 

which was higher than that in the low-dose group (1.3 μg/m2) (37). Therefore, it is important 

to select the best dose and proportion of paclitaxel for SMCs and epithelial cells. However, 

the combination application of paclitaxel and other anti-proliferation drugs, especially natural 

herbs, in preparing drug-coated stents has not been reported. In this study, 1 μmol/L 

paclitaxel was added to the optimal concentration range of hirudin to prepare different ratios 

of paclitaxel+hirudin complexes. We investigated the inhibitory effects of different ratios of 

paclitaxel+hirudin complexes on the growth of HCASMCs and HCAECs cultivated in vitro, 

highlighted the efficiency of paclitaxel+hirudin complexes as a new therapeutic strategy and 

identified 1 μmol/L paclitaxel plus 0.39 mg/mL hirudin as our final ratio of 

paclitaxel+hirudin complexes for the follow-up experiment. 

  Our study indicated that paclitaxel continuously inhibited SMC proliferation during 

the observation period and that the intact endothelium was essential in the prevention of SMC 

proliferation. At the same time, we successfully combined paclitaxel with hirudin to amplify 

the advantages of hirudin and achieved our efficiency-enhancing purpose. These results 

implied that we should not consider the “anti-tumor” approach only in restenosis prevention; 

optimal revascularization results would be achieved if the endothelial regeneration were 

simultaneously accelerated. 

  This study has some limitations. First, it was an in vitro study; additional studies in 

vivo are required. Second, the targets of the specific mechanism of paclitaxel+hirudin 

complexes are unclear and require further clarification. 

  The optimal composition of the paclitaxel+hirudin complex is 1 μmol/L paclitaxel 

plus 0.39 mg/mL hirudin, which can maximize HCASMC inhibition and minimize HCAEC 

inhibition. This preliminary study confirmed that reasonable compatibility of natural herbs 

can effectively reduce the negative effects caused by the single drug. By combining the 
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advantages of natural herbs (i.e., multiple targets and wide efficacy) with advanced modern 

technologies, we demonstrated the efficacy and feasibility of paclitaxel+hirudin complexes. 

Meanwhile, the results of this study may lead the research and development of natural 

herb-eluting stents in new directions. 
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Table 1: Inhibitory effects of hirudin on the growth and proliferation of HCASMCs 48 h after 

stimulation 

 

Group no. 
Hirudin concentration 

(mg/mL)  
 A492 nm (X ± S) 

Inhibition rate 

(%)  

1 0  0.605±0.080 0 

2 0.025  0.552±0.025 8.76 

3 0.05  0.539±0.018 10.91 

4 0.1  0.551±0.061 8.93 

5 0.2  0.516±0.069* 14.71 

6 0.39  0.471±0.101* 22.15 

7 0.78  0.416±0.044* 31.24 

8 

9 

10 

1.56 

3.13 

6.25 

 

0.332±0.049* 

0.271±0.056* 

0.134±0.049* 

45.12 

55.21 

77.85 
*P<0.05 vs. the control. 

 

 

Table 2: Inhibitory effects of hirudin on the growth and proliferation of HCAECs 48 h after 

stimulation 

 

Group no. 

Hirudin 

concentration 

(mg/mL)  

 A492 nm (X ± S) Inhibition rate (%)  

1 0  0.280±0.036 0 

2 0.025  0.262±0.067 6.43 

3 0.05  0.291±0.067 -3.93 

4 0.1  0.290±0.085 -3.57 

5 0.2  0.285±0.049 -1.79 

6 0.39  0.273±0.062 2.5 

7 0.78  0.259±0.046 7.5 

8 

9 

10 

1.56 

3.13 

6.25 

 

0.223±0.055 

0.222±0.044 

0.155±0.050# 

20.4 

20.7 

44.6 
*P<0.05 vs. the control. 
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Table 3: Inhibitory effects of paclitaxel+hirudin complexes on HCASMCs (48 h) 

Group no. 

1 μmol/L  

paclitaxel+different 

doses of hirudin 

(mg/mL)  

 A492 nm (X ± S)  
Inhibition 

rate (%)  

1 0  0.769±0.078# 0 

2 Paclitaxel only  0.498±0.026* 35.24 

3 0.2  0.377±0.048*# 50.98 

4 0.39  0.394±0.056*# 48.76 

5 0.78  0.401±0.034*# 47.85 

6 1.56  0.333±0.154*# 56.70 

7 3.13  0.349±0.049*# 54.62 

*P<0.05 vs. the control; #P<0.05 vs. paclitaxel only. 

 

 

 

Table 4: Inhibitory effects of paclitaxel+hirudin complexes on HCAECs (48 h) 

Group no. 

1 μmol/L 

paclitaxel+differen

t doses of hirudin 

(mg/mL)  

 A value (X ± S) 
Inhibition rate 

(%)  

1 (Blank) 0  0.267±0.014# 0 

2 Paclitaxel only  0.181±0.010* 32.20 

3 0.2  0.180±0.021* 32.58 

4 0.39  0.191±0.008* 28.46 

5 0.78  0.184±0.021* 30.09 

6 1.56  0.178±0.020* 33.33 

7 3.13  0.177±0.013* 33.71 

*P<0.05 vs. the control; #P<0.05 vs. paclitaxel only. 
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Fig. 1: Cell growth at 3 d under an inverted microscope. A, HCASMCs after 3-d cultivation 

(40 ×). B, HCASMCs after 3-d cultivation (100 ×). C, HCAECs after 3-d cultivation (40 ×). 

D, HCAECs after 3-d cultivation (100 ×). 

 

 

 

 

 

Fig. 2. The effects of different concentrations of hirudin on the growth of HCASMCs and 

HCAECs in vitro. Compared to the control group, hirudin obviously inhibited the growth of 

HCASMCs, *P<0.05. Compared to the control group, hirudin obviously inhibited the growth 

of HCAECs, #P<0.05. 
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Fig. 3: Effects of paclitaxel+hirudin complexes on the growth of HCASMCs and HCAECs. *, 

#P<0.05 vs. the control. 


