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ABSTRACT 

Objective: To evaluate the cancer classification techniques based on sensitivity, specificity and 

accuracy. 

Method: The survey has been done on cancers which include brain tumor, breast cancer and 

thyroid tumor using medical images. 

Results: Most of the classification techniques used on various medical images has been utilized 

for supervised learning approach such as support vector machine, artificial neural networks etc. 

Conclusion: This survey enables the medical practitioners to have a quick look on the various 

cancer classification techniques using medical images. The comparison table also provides the 

clear picture about the classification techniques based on different parameters. 
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INTRODUCTION 

The significant role played by the Medical and healthcare as a giant industry in scaling up the 

standard of living of the human beings knows no bounds. In this regard, the image based medical 

diagnosis has surfaced as one of the vital service segments in this domain. Of late, a volley of 

consistent endeavors has been carried out in the CAD by means of the medical images to boost the 

morale of a clinician in the investigation of the medical images. In fact, the assessment of the 

medical images by a clinician is invariably qualitative in nature and is likely to change from 

individual to individual (1). In this connection, the automatic diagnosis is capable of extending a 

helping hand to the pathologists by furnishing them with second opinions, thereby considerably 

scaling down the workload.  The automated diagnostic systems have been widely employed and 

have surfaced as a subject of zooming enthusiasm for a diversity of medical data embracing the 

medical signals and medical images (2). The diagnosing diseases concerned encompass the breast 

cancer, blood diseases, eye diseases, brain tumors, thyroid cancer, kidney, lung, leukemia cancer 

and the like. By the term “Classification” what is meant is the process of assigning a physical 

object or incident into one of a group of specified categories (3). The automated image 

classification systems with superior precision are a sine-qua-non for the real-time applications. 

Fundamentally, the classification can be subdivided into two distinct groups such as the 

unsupervised classification and the supervised classification (4).  The general architecture diagram 

of classification is shown in Figure 1. 

 

Classification techniques of brain tumor 
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The brain tumors represent the anomalous and unrestrained propagations of the cells, certain kinds 

of tumors originating in the brain itself and are known as the primary tumors. Other types of tumors 

extend to this location from some other portion in the body by means of metastasis, and are known 

as the secondary tumors (5, 6). Kumar et.al, (7) Fantastically flagged off an innovative automated 

method which utilized the textural features to explain the blocks of each and every MRI slice along 

with the parallel features.  

The local binary patterns and the gray level co-occurrence features, gray level and wavelet 

features were extorted and the corresponding features were trained and categorized using Support 

vector machine classifier. Whereas (8) proficiently propounded a probabilistic neural network for 

the brain tumor classification in which Discrete Wavelet Transform was initially employed by 

employing the Daubechies wavelet [db4], for disintegrating the MR image into several levels of 

approximate and detailed coefficients. The Neural network represents a novel technique intended 

for the purpose of the automatic categorization of magnetic resonance images [MRI].  

Further, it is home to the supervised feed-forward back-propagation neural network method 

which is effectively employed to categorize the normal or abnormal images. The Artificial neural 

networks utilized for the brain image categorization are also computationally hard and do not 

ensure superior precision (9). With an eye on effectively identifying the Brain Tumor cells, a novel 

clustering approach dependent on the FCM can be elegantly carried out (13). In this regard, the 

Clustering method training is efficiently performed by means of the pixel features with qualities 

of each and every group (14). During the course of segmentation of the image, there is a feast of 

roadblocks encountered as the brain structure achieved is incredibly complicated and does not 

represent smooth imagery.  
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Hence, for the purpose of the defined recognized, an appropriated algorithm has to be made 

use of. Thus, by employing the FCM the cluster formation is found to be very quick. Further by 

means of the optimization employing the particle swarm (15) there is a significant enhancement 

in the time-frame together with the accuracy. In this regard, special mention has to be made of the 

neural fuzzy techniques which gain an unsurpassable edge over the peer techniques boosted by 

their sterling performance. 

It is established that the classification precision of the integrated neuro fuzzy classifier is 

relatively superior to those of the individual fuzzy and neural classifiers. To add another feather in 

the cap of the neuro fuzzy classifier, its convergence time period is an amazing one to the tune of  

(11) which can also be augmented considerably by means of integrating the Neuro - Fuzzy 

classifier with the Genetic algorithm, which goes a long way in scaling up the precision to a 

whopping  (12). The techniques Presented for the Diagnosis of Brain Tumor is shown in Table1. 

 

Classification techniques of breast cancer on mammograms 

A mammogram, in quintessence, represents a scrutiny of the breast for the vital objective of 

averting and diagnosing the breast cancer. In (16) (17)(18)(19)(20)(21)(22)(23) a flood of novel 

techniques have been flagged off intended for the identification of the masses. The machine 

learning methods are offered a red carpet welcome as the highly preferred applications devoted for 

the purpose of the classification (18). Standing out amongst the several classification approaches, 

the neural network based classifiers (20, 24) have been efficiently employed in a large majority of 

the applications such as the medical image analysis. Further, the Radial Basis Function Network 

(RBFN) has also been extensively employed in a multitude of science and engineering domains 

(18). The SVM classifiers (17)(21), Probabilistic Neural Networks (19), Self Adaptive Resource 

Allocation Network Classifier (18), K-Nearest Neighbor [KNN] (20), Fuzzy Classifier (25), SVM 
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model employing the RBF and Polynomial kernel functions with varying arguments like the 

RBF_Sigma, Box Constraint & Polyorder (26) are also extensively utilized for the purpose of the  

classification. The existence of micro-calcification clusters is deemed as a very vital sign of the 

malignant categories of breast cancer, and its recognition is highly essential for the prevention and 

cure of the ailment. Therefore, in (27-29) have proposed effective approaches, in order to detect 

microcalcification clusters in digitized mammograms. The techniques Presented for the Diagnosis 

of Breast Cancer is shown in Table 2. 

 

 

 

Classification techniques of thyroid tumor  

The classification of papillary carcinoma and medullary carcinoma cells (30), thyroid nodules (31), 

thyroid lesions (32) methods in Fine Needle Aspiration Biopsy (FNAB) microscopic cytological 

images have been elegantly launched. In (30) at the outset, the image segmentation is carried out 

to eliminate the background staining data in microscopic images by means of the mathematical 

morphology. The Feature extraction is performed with the help of the Discrete Wavelet Transform 

(DWT) and Gray Level Co-occurrence Matrix (GLCM) and the classification is carried out by 

means of the k-Nearest Neighbor (kNN) classifier. The diagnostic precision of the GLCM is 

incredibly increased to the tune of a whopping 90% by effectively performing the majority voting 

rule. In this regard, the Ultrasound imaging appears as the finest candidate to effectively forecast 

the type of thyroid existing. The Ultrasound images invariably consist of the speckle noise and for 

the purpose of dispelling the noise several filters are employed, and further the used histogram 

equalization generates visual divergences and improves the contrast between images (33). Gray 

level co-occurrence matrix [GLCM] texture characterization methods are effectively used for the 
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purpose of the feature extraction (33)(34). The extorted features are categorized by means of 

several techniques such as the Neural Network (38), scaled conjugate gradient back propagation 

training neural network (34)(33)(38) KNN and Bayesian (33), Linguistic Hedges Neural-Fuzzy 

Classifier with Selected Features (36) for the diagnosis of thyroid nodule. It is a daunting challenge 

to discriminate the diverse follicular derived lesions from one another (37).  The techniques 

presented for the diagnosis of Thyroid tumor is shown in Table 3. 

 

 

CONCLUSION 

A host of medical image detection techniques have been extensively employed to make their 

significant contribution towards assisting the diagnosis of several ailments further precisely. In 

this regard, the image classification represents a daunting challenge which elegantly employs the 

image processing, pattern recognition and the classification techniques.  In this regard, the 

automatic medical image classification emerges as a progressive region in the realm of the image 

classification, with the scope for added advancements in the days to come.  In view of this, the 

automatic diagnosis is capable of extending a helping hand to the pathologists by furnishing them 

with second opinions, thereby going a long way in scaling down their workload.  
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Table 1:  Techniques Presented for the Diagnosis of Brain Tumor 

 

Technique 

 

Classifier 

 

Sensitivity 

 

Specificity 

 

Accuracy 

 

Type 
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DCANN(5) ANN NA NA 90% Supervised 

BMMRI(6) SVM NA NA 98.87% Supervised 

 

PATSC(7) SVM 99.47% 99.6% 99.5% Supervised 

 

AMDIS(10) 

 

ANN 

 

80.4% 

 

75.6% 

 

NA 

 

Supervised 

 

BTCC(13) 

 

PNN-RBF 

 

79.27% 

 

71.52% 

 

NA 

 

NA 

 

BTDPSO(15) 

 

FCM with 

PSO 

 

NA 

 

NA 

 

98.57% 

 

Unsupervised 

 

ABTD(39) 

 

ANN 

 

NA 

 

NA 

 

96% 

 

Supervised 

 

CMRBNN(40) 

 

ANN 

 

NA 

 

NA 

 

95% 

 

Supervised 

 

BMRISVM(41) 

 

Least Squares 

SVM 

 

99.64% 

 

95.5% 

 

98.64% 

 

Supervised 

 

PLCPNN(42) 

 

PNN 

 

88% 

 

83% 

 

87% 

 

Supervised 

 

HTAMR(43) 

 

 

-do- 

 

DWT+PCA+

ANN 

 

98.3% 

 

81.8% 

 

95.7% 

 

Supervised 

 

DWT+PCA+

KNN 

 

98.4% 

 

100% 

 

98.6% 

 

Supervised 

 

 

 

 

 

 

 

 

 

Table 2: Techniques Presented for the Diagnosis of Breast Cancer 
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Technique Classifier Sensitivity Specificity Accuracy Type 

 

BCDTM(19) PNN 90.3% 100% 92.3% Supervised 

AADCM(20) ANN 100% 93% 97% Supervised 

-do- KNN 100% 91% 95% Unsupervised 

 

MCMMN(21) 

 

Fuzzy K- 

Nearest 

Neighbor 

Equality 

 

94.46% 

 

96.81% 

 

96.52 

 

Unsupervised 

 

DMMI(22) 

 

SVM 

 

80% 

 

85.68% 

 

84.62% 

 

Supervised 

 

ENNBS(23) 

 

NN 

 

96% 

 

99.12% 

 

97.51% 

 

Supervised 

 

DMBAR(24) 

 

SVM 

 

100% 

 

85.37% 

 

90.26% 

 

Supervised 

 

SVMABC(26) 

 

SVM-RBF 

 

96.5% 

 

98.36% 

 

97.13% 

 

Supervised 

 

CCMANN(28) 

 

SVM 

 

NA 

 

NA 

 

90.16% 

 

Supervised 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Techniques Presented for the Diagnosis of Thyroid Tumor 
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Technique 

 

Classifier 

 

Sensitivity 

 

Specificity 

 

Accuracy 

 

Type 

 

MVCC(30) K-NN 94.28% 97.14% 95.71% Unsupervised 

TNSW(31) FNAC 79.27% 71.52% NA NA 

 

DAFN(32) FNAC 92.8% 94.2% 93.6% NA 

 

TATU(34) 

 

Feed Forward 

Neural 

Network 

 

98.08± 

1.77% 

 

97.37± 

2.76% 

 

97.72± 

1.69% 

 

Supervised 

 

CCTUI(35) 

 

SVM 

 

80% 

 

100% 

 

84.61% 

 

Supervised 

 

-do- 

 

KNN 

 

75% 

 

0% 

 

46.15% 

 

Unsupervised 

 

-do- 

 

Bayesian 

 

0% 

 

100% 

 

38.46% 

 

Supervised 

 

ESBNF(36) 

 

Linguistic 

Hedges 

Neural- Fuzzy 

Classifier 

 

NA 

 

NA 

 

97.67% 

 

Unsupervised 

 

TNSC(38) 

 

ANN 

 

93.33% 

 

70% 

 

87.50% 

 

Supervised 

 

-do- 

 

SVM 

 

96.66% 

 

80% 

 

92.50% 

 

Supervised 
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Figure: General Architecture Diagram of Classification. 
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