Evaluative Research on Pharmacist-managed Diabetes Care: Focus on Self-Monitoring of Blood Glucose
PI Sealy1, DN Ignacio1, G Legall2

ABSTRACT

Objective: Pharmacists have not demonstrated the ability to manage chronic diseases such as Type 2 Diabetes Mellitus, which is an ongoing problem in Trinidad and Tobago. The primary objective was to demonstrate that pharmacists can assist patients to achieve at least a 1% decrease in glycosylated haemoglobin (HbA1c).

Methods: A randomized, controlled Pharmacist Evaluative Research Study compared the efficacy of pharmacist-managed care (the intervention), and routine standard management (control) of poorly controlled (abnormal HbA1c, blood pressure, blood glucose and lipid panel) adult diabetic patients. Participants in the intervention group met with the pharmacist at their respective primary care sites on a regular basis for an assessment of adherence to medications, barriers to adherence and education. Control group participants consisted of patients receiving routine care by their primary physician but with no direct intervention by the pharmacist except for the filling of prescriptions.

Results: Seventy-five patients were initially recruited. Of these, 48 (20 intervention and 28 control) met the inclusion criteria. It was only possible to analyse the result from 20 patients: 14 (70%) intervention and 6 (21.4%) control because of incomplete collected data. A minimum decrease of at least 1% HbA1c was obtained by 8 (57%) intervention participants compared to 2 (33%) in the control group; while HbA1c remained unchanged for two participants, each in the intervention and control groups (14% and 33%, respectively).

Conclusion: We could not conclude any statistical or clinical significance in the paper as the data could only be analysed using descriptive methods. Building a culture of research among pharmacists may promote the use of pharmacists as adjunctive healthcare practitioners to achieve better patient outcomes.

Keywords: Chronic diseases, diabetes mellitus, glycosylated haemoglobin, managed care, pharmaceutical care, pharmacists

Investigación Evaluativa sobre Atención a la Diabetes Gestionada por los Farmacéuticos: Enfoque del Automonitoreo de la Glucosa en Sangre
PI Sealy1, DN Ignacio1, G Legall2

RESUMEN

Objetivo: Los farmacéuticos no han demostrado ser capaces de manejar el tratamiento de enfermedades crónicas como el tipo 2 diabetes mellitus, que es un problema actual en Trinidad y Tobago. El objetivo principal fue demostrar que los farmacéuticos pueden ayudar a los pacientes a lograr al menos una disminución del 1% en hemoglobina (HbA1c).

From: 1Schools of Pharmacy and 2Medicine, Faculty of Medical Sciences, The University of the West Indies, St Augustine. Correspondence: Dr P Sealy, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, Eric Williams Medical Sciences Complex, Bldg 39 Champs Fleurs, Trinidad and Tobago. E-mail: patricia.sealy2@sta.uwi.edu

Métodos: Un Estudio de Investigación Evaluativa Farmacéutico controlado aleatorio, comparó la eficacia de la atención gestionada por los farmacéuticos (intervención) y el manejo estándar de rutina (control) de pacientes diabéticos adultos con pobre control (niveles anormales de hemoglobina glicosilada, presión arterial, glucosa en sangre, y perfil lipídico). Los participantes en el grupo de intervención se reunieron de manera regular con el farmacéutico en sus respectivos centros de atención primaria para evaluar el cumplimiento con los medicamentos, así como los obstáculos a la observancia y la educación. Los participantes del grupo de control eran pacientes que recibían atención de rutina de parte de su médico primario, pero sin intervención directa del farmacéutico, excepto para el llenado de prescripciones.

Resultados: Setenta-cinco pacientes fueron reclutados inicialmente. De estos, 48 (20 de intervención y 28 de control) cumplían los criterios de inclusión. Debido a que los datos recopilados estaban incompletos, sólo fue posible analizar el resultado de 20 pacientes: 14 (70%) de intervención y 6 (21.4%) de control. Una disminución mínima de al menos 1% de HbA1C fue obtenida por 8 (57%) participantes de intervención en comparación con 2 (33%) en el grupo de control, mientras que el HbA1C permaneció inalterado para 2 participantes, cada uno en los grupos de intervención y control (14% y 33%, respectivamente).

Conclusión: Los datos apoyan la hipótesis de que la gestión de los farmacéuticos como profesionales complementarios de la salud, posibilita lograr mejores resultados en los pacientes, a diferencia de lo que ocurre en ausencia de tal gestión.

Palabras clave: Enfermedades crónicas, diabetes mellitus, hemoglobina glicosilada, atención gestionada, atención farmacéutica, farmacéuticos

INTRODUCTION

Diabetes, especially Type 2 Diabetes (90%), is an ongoing problem for many nations. The world-wide prevalence of diabetes estimated by World Health Organization (WHO) was approximately 175 million in 2000 and is predicted to be at least 366 million by 2030, among adults ≥ 20 years of age (1, 2). Approximately two-thirds of persons with diabetes live in developing countries (3). The WHO estimate for Trinidad and Tobago in 2000 was 60 000 and is projected to increase to 125 000 if current trends prevail (4). Recent data (unpublished) from the Trinidad and Tobago (TT), Ministry of Health (MoH) indicate that the Chronic Disease Assistance Programme (CDAP), since its inception in 2003 to 2009, has provided medicines for approximately 226 435 diabetic patients. The National Insurance Property Development Company [NIPDEC] procures and manages the distribution of medicines for CDAP on behalf of the MoH (5). This figure represents approximately 38% of the total patient population receiving treatment through CDAP; the total cost of diabetes treatment amounted to 285 million USD (6).

A report by the Pan American Health Organization (PAHO) indicates that diabetes mellitus is one of the leading health problems in the Caribbean, contributing significantly to morbidity and mortality, and adversely affecting both the quality and quantity of life (7). Deaths from diabetes ranked # 2 (#1 is ischaemic heart disease) for all age groups for both genders for the period 1998 to 2000 (8). In TT, ethnicity is an important risk factor since persons of South Asian origin have a higher prevalence of diabetes than other ethnic groups (8). Poor glycemic control has been shown to manifest in costly lifelong morbidities, including blindness, kidney failure, amputations and cardiovascular disease (9, 10). The economic burden of treating long-term diabetes complications is well-documented (9, 10). Improving glycemic control in patients with Type 2 diabetes mellitus can prevent or delay the onset or slow the progression of microvascular and macrovascular complications (11–15).

The MoH through CDAP provides medications for many special conditions, including diabetes. Chronic Disease Assistance Programme was instituted as a patient-centred intervention programme to better manage diabetes and to prevent or significantly slow-down the progression of diabetes-related complications. The diabetic patients who have accessed the programme to date have retrieved medications from 253 public and private pharmacies from the prescriptions of approximately, 1000 physicians in TT (5). Diabetes was recorded as the
second (the first is heart disease) leading cause of death for all age groups in TT for the years 1998 to 2000 (16). Research data in the United States of America support the effective use of clinical pharmacists to successfully manage diabetes in patients who were poorly controlled (14, 17–20). Clinically trained pharmacists can assist primary care providers (physicians) to achieve desired outcomes.

Current statistics infer that much attention should be given to diabetes care. The global prevalence of diabetes was estimated to be 9% among adults in 2014 (21); diabetes caused an estimated 1.5 million deaths in 2012, while greater than 80% of those deaths occurred in low- and middle-income countries (4, 22); approximately half of the deaths, due to diabetes have occurred in persons under the age of 70 years; 55% of diabetes deaths are in women; and WHO projects that deaths due to diabetes will increase by ≥ 50% in the next 10 years if urgent action is not implemented (23). Diabetes and its complications impose significant economic consequences on individuals, families, health systems and countries. Therefore, imposing a healthy diet, regular physical activity, maintaining a normal body weight and avoiding tobacco use can prevent or delay the onset of Type 2 diabetes (24). Research supports the perception that poorly managed diabetes results in medical consequences (diabetic retinopathy, and neuropathy, amputation, kidney failure, cardiovascular disease and death), which imposes a significant economic burden on healthcare resources (3, 15).

This is a pioneer study to evaluate the impact of pharmacist intervention on glycaemic control and other health-related, clinical outcomes in diabetic patients. The objective was to determine if there was a decrease of at least 1% in glycosylated haemoglobin (HbA1c) and improved medical outcomes (blood pressure (BP), blood glucose (BG), and lipid panel (triglyceride [TG], low density lipid-cholesterol [LDL-C], and high-density lipid-cholesterol [HDL-C]) after pharmacist interventions.

METHODS

Randomization

Phase I consisted of training pharmacists in diabetes management by a Certified Diabetes Educator over a three-day workshop, after which a certificate was awarded to 56 pharmacists; many of these pharmacists indicated a willingness to participate in the study.

This pharmacist evaluative research study (PHARMERS) was a randomized, control, longitudinal study, involving two cohorts (intervention versus routine care) of poorly controlled (abnormal parameters: HbA1c, BG, BP, TG, LDL-C and HDL-C tests) adult diabetic patients across TT. Enrolment and patient participation in the study were voluntary and subject to the completion of the consent form. This study was approved by the Ethics Committee of The University of the West Indies and all Regional Health Authorities (RHAs) of the MoH. Pharmacists recruited the patients based on specified criteria. The criteria for participation included ambulatory adult (> 18 years), Type 1 and 2 diabetic patients selected from private and public institutions, who were in receipt of and used medications from CDAP.

Participants were excluded for any of the following categories:

i. Pregnancy
ii. Age < 18 years
iii. Diminished mental capacity
iv. Prisoner
v. End-stage renal disease
vi. Diminishing visual acuity
vii. Inability to perform home blood glucose monitoring
viii. HbA1c < 7

In addition, patients who failed to adhere to instructions given by the pharmacist for the duration of the study were excluded.

The study attempted to recruit 92 patients. Each pharmacist was required to select four patients, 50% of whom were assigned randomly to the intervention group and the others to the control group. The pharmacist was responsible for preparing an individualized care plan for each patient with the assistance of two clinical coordinators. Participants in the intervention group met with the pharmacist at their respective primary care sites on a regular basis (monthly or quarterly) for an assessment of adherence, HbA1c, BG and BP testing, barriers to optimizing BG and BP, current medication regimen, diet, exercise and individualized education. The control group consisted of routine care by their primary physician but with no direct intervention by the pharmacist, except for the filling of a prescription. Each patient was monitored for 12 months from the date of enrolment. Baseline tests were performed on all participants and included: HbA1c, BP, lipid panel (HDL-C, LDL-C, TG), and demographics (age, gender, height and weight); these variables were measured at each monthly follow-up visit. The primary outcome measure was a decrease of at least 1% in HbA1c level.
The frequency distribution of selected demographic variables is shown in Table 2. The patients were predominantly female (n = 14; 70%), had no higher than a secondary school education (n = 15; 75%) and had been diagnosed for over ten years (n = 10; 50%).

Table 2: Frequency distribution of selected demographic variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>6</td>
<td>30.0</td>
</tr>
<tr>
<td>Female</td>
<td>14</td>
<td>70.0</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indo-Trinidadian</td>
<td>1</td>
<td>5.0</td>
</tr>
<tr>
<td>Afro-Trinidadian</td>
<td>4</td>
<td>20.0</td>
</tr>
<tr>
<td>Mixed</td>
<td>2</td>
<td>10.0</td>
</tr>
<tr>
<td>Unknown</td>
<td>13</td>
<td>65.0</td>
</tr>
<tr>
<td>Highest level of education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>8</td>
<td>40.0</td>
</tr>
<tr>
<td>Secondary</td>
<td>7</td>
<td>35.0</td>
</tr>
<tr>
<td>Other (Unspecified)</td>
<td>1</td>
<td>5.0</td>
</tr>
<tr>
<td>Unknown</td>
<td>4</td>
<td>20.0</td>
</tr>
<tr>
<td>Years since diagnosed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–5</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>6–10</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>11–20</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>> 20</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Unknown</td>
<td>5</td>
<td>25</td>
</tr>
</tbody>
</table>

Outcomes

Eight patients in the intervention group (57.1%) experienced a ≥ 1% decrease in HbA1c compared to two patients (33.3%) in the control group Table 3.

Table 3: Alterations in HbA1c, levels by treatment group

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Treatment n = 14 (%)</th>
<th>Control n = 6 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decrease</td>
<td>8 (57.1)</td>
<td>2 (33.3)</td>
</tr>
<tr>
<td>Increase</td>
<td>4 (28.6)</td>
<td>2 (33.3)</td>
</tr>
<tr>
<td>No change</td>
<td>2 (14.3)</td>
<td>2 (33.3)</td>
</tr>
</tbody>
</table>

The change in BP and weight from baseline can be observed in Table 4.

Among the intervention group, seven and five patients, respectively, had decreases in weight and blood pressure. Among the intervention group, improvements were observed in LDL-C only for three patients while HDL-C, LDL-C and TG were maintained by 11, 7 and nine patients, respectively Table 5.

Medications

The participants, collectively, were prescribed medications for 1) diabetes: metformin, insulin, gliclazide and
diamicron; 2) hypertension: nifedipine, enalapril, atenolol, bendrofluazide and lisinopril; 3) hypercholesterolaemia: simvastatin and rosuvastatin; and 4) cardiovascular disorders: isosorbide dinitrate, aspirin and and glyceryl trinitrate. Medications were not stated for six patients. Several patients had co-morbidities; six with hypertension, four with hypercholesterolaemia and five with cardiovascular disorders. Some patients were on other medications, such as omeprazole.

DISCUSSION
There was no difference between the patients with respect to initial or baseline age and weight. The success of the intervention was a decrease of ≥ 1% in HbA\textsubscript{1c} among 57% of intervention patients, compared to 33% of control patients. This suggests that pharmacists who participated in the training programme acquired the competencies necessary to achieve similar successes among diabetic patients as demonstrated by Wishah \textit{et al} (25).

<table>
<thead>
<tr>
<th>Measures (%)</th>
<th>Intervention n = 14</th>
<th>Control n = 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP Decreased</td>
<td>35.7%</td>
<td>16.7%</td>
</tr>
<tr>
<td>Weight</td>
<td>50.0%</td>
<td>50.0%</td>
</tr>
</tbody>
</table>

Table 4: Decrease in HbA\textsubscript{1c}, blood pressure and weight from baseline

The results also showed that weight reduction, ranging from 1.1 to 6.7 lb, was achieved by four (57.1%) of the intervention patients compared to two (33.3%) in the control group who had reductions of 3.3 and 4.4 lb, respectively. Our findings were similar to other preliminary data by Cutler \textit{et al} (18); these researchers revealed that patients who received targetted educational and lifestyle interventions (including weight reduction) by healthcare professionals, among them pharmacists, achieved desired parametric endpoints with improved cost-benefits and cost-effectiveness (15, 26).

Our findings seem to support the results of the literature, which is replete with pharmacist intervention studies. These have shown that patient adherence and improved clinical indicators (HbA\textsubscript{1c}; lipid panel, etc) redounded to reduced complication risk, which ultimately prolonged life (27–31). Additional benefits of the intervention group included lipid panel: HDL-C and TG parameters were maintained, while LDL-C was
maintained or improved Table 5, accompanied by a reduction in weight and BP Table 4.

Limitation
Many pharmacists initially agreed to participate but failed to commit for unknown reasons. The patient cohort was too small, therefore, better methods for recruitment needed to be explored. The failure of patients to document key measurements (SMGB, BP), as requested by the pharmacist, was responsible for the exclusion of these patients in the statistical analysis. All of these factors reinforced the importance of preventing patients from absconding in order to reduce the high attrition rate.

CONCLUSION
The authors do acknowledge that since only descriptive methods were possible, the findings regarding the success of the intervention and its benefits to the patient are inconclusive. An important merit of the findings is the problem of patient attrition and its impact on epidemiological studies in developing countries. Failure to form evidence-based judgment regarding the success and benefits of this study provides strong evidence in favour of efforts to reduce patient attrition in public healthcare. The stakeholders (RHAs and Health Planners) can offer incentives to pharmacists for greater participation in the management of patients with diabetes in various healthcare settings across TT. Additionally, pharmacists need to be equipped and trained for participation in disease management research studies. An integral aspect of future research involves taking steps to develop a culture of research among pharmacists.

ACKNOWLEDGMENTS
We are grateful to the pharmacists (clinical coordinators - Brenda Sylvester-Charles and Judy Hunte; recruiters - Laurie Bonaparte, Claudette Gomez, Dania Jaipersad, Veena Maharaj, Mathias Marfan, Denise Peters, Elson Robinson, Subhash Singh, Indira Singh-Bhagaloo and Andrea Supervile) for agreeing to participate in this novel study.

We also express thank two industry partners, Roche and Sanofi, for their generosity. Sanofi provided booklets for distribution to patients to self-document their blood pressure and blood glucose readings. Roche provided glucometers (Accu-Chek®), lancets and strips for patients who were not afforded these by the Ministry of Health CDAP to facilitate the self-monitoring of blood glucose.

AUTHORS’ NOTE
This work was supported by the Campus Research and Publication Fund Committee of The University of the West Indies, St Augustine Campus and the Caribbean Public Health Agency (CARPHA, formerly Caribbean Health Research Council, CHRC). We do not have other conflicts of interest.

REFERENCES

