
271

Super-resolution for Medical Image via Sparse Representation and Adaptive 
M-estimator
Q Xie1, 2, N Sang1

ABSTRACT
Objective: The goal of super-resolution is to generate high-resolution images from low-
resolution input images.
Methods: In this paper, a combined method based on sparse signal representation and 
adaptive M-estimator is proposed for single-image super-resolution. With the sparse signal 
representation, the correlation between the sparse representation of high-resolution patches and 
that of low-resolution patches for the identical image is learned as a set of joint dictionaries and a 
set of high-resolution patches is obtained for high- and low-resolution patches. Then the 
dictionaries and high-resolution patches are used to produce the high-resolution image for a low-
resolution single image.
Results: At the post-processing phase, the adaptive M-estimator, combining the advantages of 
traditional L1  and L2  norms, is used to give further processing for the resultant high-resolution 
image, to reduce the artefact by learning and reconstitution, and improve the performance. 
Conclusion: Three experimental results show the performance improvement of the proposed 
algorithm over other methods.
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Súper resolución de la imagen médica mediante escasa representación y estimador-M 
adaptativo

Q Xie1, 2, N Sang1

Objetivo: El objetivo de la súper resolución es generar imágenes de alta resolución a partir de 
imágenes de input de baja resolución. 
Métodos: Este trabajo propone un método combinado basado en la representación escasa de las 
señales y el estimador-M adaptativo a fin de obtener una imagen de súper resolución. Con la repre-
sentación de señal escasa, la correlación entre la escasa representación de parches de alta resolu-
ción y la de parches de baja resolución para la imagen idéntica, es aprendida como un conjunto de 
diccionarios asociados, y se obtiene un conjunto de parches de alta resolución para parches de alta 
y baja resolución. Entonces los diccionarios y parches de alta resolución se utilizan para producir 
la imagen de alta resolución para sustituir una imagen de baja resolución.
Resultados: En la fase de post-procesamiento, el estimador-M adaptativo, que combina las ven-
tajas de las normas tradicionales L1  y L2 , se utiliza para dar mayor procesamiento a la imagen 
de alta resolución resultante, para reducir los artefactos mediante aprendizaje y reconstitución, y 
mejorar el rendimiento.   
Conclusión: Tres resultados experimentales muestran la mejora del rendimiento del algoritmo   
propuesto por encima de otros métodos.
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INTRODUCTION
The goal of single-image super-resolution (SR) is often to en-
large a single image while preserving the features of the orig-
inal image, such as sharp edge and texture. Many approaches 
have been proposed and studied for this task (1–3).

The conventional ways to enlarge a single-image is based 
on the scaling-up schemes such as interpolation. Simple in-
terpolation methods often result in an over smoothing of the 
image (4), with some artifacts of ring at the edges. For over-
coming these disadvantages, prior knowledge can be used to 
obtain more satisfying results (5, 6). While these methods 
are superior in preserving image edges, they are not enough 
to simulate the visual complexity of the true image. Another 
category of single-image SR approach is based on learning 
techniques (1, 7), which attempt to improve the performance 
of SR by exploiting the prior between low-resolution and 
high-resolution image patches. The literature (1) proposed an 
example-based learning strategy. However, the methods typ-
ically require enormous databases of millions of high-resolu-
tion and low-resolution patch pairs and are therefore computa-
tionally intensive. Kim and Kwon (7) propose the strategy of 
local linear embedding from manifold learning. The algorithm 
maps the local geometry of the low-resolution patch space to 
the high-resolution one, generating high-resolution patch as a 
linear combination of neighbours. Using this strategy, more 
patch patterns can be represented using a smaller training 
database. However, using a fixed number K neighbours for 
reconstruction often result in blurring effects, due to over-or 
under-fitting.

A method based on the learning method and sparse repre-
sentation of signal was recently proposed to implement the 
single-image SR (8–10). The statistical properties of image 
and sparse representation of signal imply that the lineari-
ty relation between high-resolution can be recovered based 
on their low-resolution projection. Dissimilar to the exam-
ple-based method (1), the algorithm exploits a certain sparse 
representation of image patch pairs sampled from the high- 
and low-resolution image, instead of directly using these im-
age patch pairs, where this sparse representation is obtained 
by learning-based method from these image patch pairs. Hav-
ing no direct use for the abundant patch-pairs, the algorithm 
avoids complicated computation.

This method is relatively simple, and yet it produces a 
substantial improvement over the conventional interpolation 
scheme. However, the method based on learning and sparse 
representation of signal has some space for improvement of 
the consequent output quality due to a prior of image itself 
having not been fully utilized.

Various further improvements have been considered to 
enhance the quality of the scaled-up image. One type of im-
provement is to migrate certain statistical methods used for 
multi-frame image super-resolution to improve the quality 
of the scaled-up image, such as back-projection algorithm, 
Markov random field (9, 11). The outcome of the method can 
effectively depress the artifacts due to the over-learning and 

mismatching, but it still uses the low-resolution image ob-
servation only, instead of the information of high-resolution 
image.

Using the method of image reconstruction is another op-
tion. While the post-processing procedure can be considered 
as reconstructing the scaled-up image obtained with the learn-
ing method and sparse-representation to produce the original 
high-resolution image, here, the M-estimator is considered as 
a reasonable post-processing tool.

M-estimator is widely used to solve ill-posed problems 
(12–16). For SR, the M-estimator based reconstruction meth-
od tries to recover the original HR image by minimizing an 
objective function consisting of a fidelity term and a regular-
ization term. The M-estimator often minimizes two   norms 
for fidelity term and regularization term, respectively (13–16). 
Farsiu et al proposed to use the L1 error norm (12) and showed 
that L1 norm is more robust to large errors that may occur 
due to intensity outliers. Although L1 norm-based estimator 
increases the robustness against outliers, it causes the mini-
mizing function to be unconvex. Therefore, the steepest de-
scent method and conjugate gradient algorithm cannot guar-
antee the convergence of its solution, and cannot guarantee 
accurately solving the problems. So, there is need to find an 
estimator combining both advantages of the L1 and L2 norms 
in the class of convex functions.

In this paper, we propose a robust norm, which can be 
adaptively close to L1 and L2 norms, for post-processing the 
obtained HR image by sparse representation method for LR 
single image. Using the proposed norm can preserve large 
gradients corresponding to edges, while smooth, small gra-
dients usually are the effects of noise. The formed objective 
function is twice continuously differentiable and strictly con-
vex, and hence the gradient-based optimization technique can 
find the unique optimal super-resolution image.

MATERIALS AND METHODS
Modeling the problem
A low-resolution image, zl , is assumed to be created from
the high-resolution one, xh , by zl = SH xh +v, [1] where
H and S are the blur and decimation operators, respectively. 
The operator S performs decimation by an integer factor. The 
vector v is an additive zero-mean white Gaussian noise, with           
standard-deviation σ  . Let xl, having the same size as xh , be
the scaled-up image of zl.

Let  be a high-resolution image patch of size               
         , extracted by       the operator from the image      in  

location k. We assume that      can be represented sparsely 
by                over the dictionary                       ie                   , where
             . 

Consider the corresponding low-resolution patch 
,,,, 

 
extracted from yl  in the same location k, which size is             
. We assume that p   = Lp    +      , where L is a local operator 
and       is the additive noise in this patch.

xh

q IRm
k ∈ A IR n m

h
×∈ p A qh

k h=

n n×

0|| q || n<<

R k

Methods of Super-resolution for Medical Image

n n×

ph
k

p R yl
k k l= ,

l
k

h
k

vk
vk



273

Since                 , we have
Lp   = LAhq.  [2]

Exploiting the relation between the low- and the high-resolution 
patches, p   = Lp   +      , we thus get 

LAhq= Lp   = p

implying that j
x   = Lx    + o vo [4], where    is related to the noise power σ   
of  v .

The derivations above imply that the low-resolution patch 
should be represented by the same sparse vector q over the 
effective dictionary             , with an error    . This further im-
plies that for a given low-resolution patch p , we should find 
its sparse representation vector, q, and then we can recover                                                                                                      
p  by simply multiplying this representation by the dictionary      
A  .

Super-resolution
According to the above model, the single-image super-reso-
lution algorithm consists of a dictionary-training phase and 
super-resolution reconstructing phase.

Training of image dictionary: Before training of image 
dictionary, there needs to be construction of patch pairs. As 
examples, we collected some high-resolution image {x  }j.  h 
Each of these images is blurred and down-scaled by a factors, 
which forms the corresponding low-resolution image {z j } . 
These low-resolution images are then scaled-up back to the 
original size, resulting in the image set {x  j }j. The procedure 
can be denoted as: x   = Lx   + ovo

j.
 Then the different images are computed as 
e   = x   - x   [5]
After some pre-processing steps such as removing their 

low-frequency components from e   and filtering by high-pass 
filters, we can extract the local patches, and form the dataset  
P = {p  , p  }k. The dataset is further processed to reduce the 
dimension.

The first step of the dictionary-training phase is to construct 
the low-resolution dictionary                       from the low-resolu-
tion patches          and obtain the sparse representation vector 
qk corresponding to the training patch     .

Then for constructing the high-resolution dictionary, which 
is used to recover the patch      by approximating it as being       

            , we should seek a dictionary Ah such that this approx-
imation is as exact as it can be. Thus, we define this dictionary 
to be the solver of the problem

where the matrix  Ph contains           as its columns, and Q con-
tains          as its column. The solution of the problem is given 
by  
Ah = PhQ

+ = PhQ
T(QQT)-1 . [7]

Considering the high-resolution patches overlap, the even-
tual high-resolution images would be constructed by position-

[6] 

{p }h
k k

{q }k k

[10]
1x

x 1

x̂ arg min || SHx z ||

arg min | |

l

l

l l

M

k
k

e
=

= −

= ∑

[9]

[8]

n n×

Xie and Sang

j
h

j

vk
h
k

l
k

vk
h
k

l

lε

l
k

h
k

h

l

l

j

j
l

j
h

l
j

h
k

l
k

{p }l
k k

pl
k

ph
k

p A qh
k h k≈

{p }l
k k

{p }l
k k

{p }l
k k%

{p }l
k k%{p }l

k%

{q }k k

{q }k k

{p }l
k k%

{p }l
k k%

p LA ql
k k he = − ( )xρ

p A qh
k h=

- [3]

ε

A LAl h=
l
k

j
h

j
h

A ln m
l

×∈ ¡

l
k

ing these patches and averaging over their overlaps.

Super-resolution of image: For a given low-resolution image 
zl , which has been generated from a high-resolution image xh 
by the same blur and scale-down operations as used in the 
train-ing, the following steps are used for performing the 
super-resolution:

• Scale this image zl  up by a factor of s using interpolation
method, resulting in xl .

• Filter the image xl using the high-pass filters that were
used in the dictionary-training phase, and obtain a set of
images only with high frequencies. Extract patches from
these images, each of size              . Each patch that cor-

    responds to the same location is to be concatenated to 
    form a patch vector        . All patches form the set        .
• Process the found patches          by the same method as
    the training phase to reduce their dimensionality, result-
    ing with the set        , each patch of lengthnl. Apply the
    OMP algorithm on        , allocating L atoms to their 

 representation, and find the sparse representation vectors             
           .
• Multiply the representation vectors          by the high-    
     resolution dictionary Ah , and obtain the approximated 
     high-resolution patches, {Ahqk}k =          . 
• Construct the final super-resolved image by putting    

to their proper location, averaging in overlap regions, 
and adding to the final image xl.

The adaptive M-estimator for post-processing
M-estimation (17, 18) is based on the minimization of a cost 
function which measures the residual between the captured 
LR images and the estimated HR image, and can be written as 
the following minimization problem

where                         , and         called an M-estimator is an
even symmetric positive function that has a unique minimizer 
at x = 0 (19). Assuming the zero mean Gaussian noise model 
in Eq [1], the ML estimation of HR image can be achieved 
when  

However, because of the L2 error norm in the cost function 
in Eq [4], the solution exhibits a poor performance in the 
presence of intensity outliers or large registration errors (18). 
Farsiu et al made progress by proposing the use of the L1 error 
norm as a robust alternative to the L2 error norm (12) and the 
reconstructed HR image is solved by
   

j
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a2 are the threshold parameter.
Conjugate gradient (CG) optimization can be used for 

solving the problem guarantees the CG optimization tech-
nique converge to the global minimizer. The procedure for CG 
optimization of our model (13) is described as follows. The 
current HR estimate is updated by

where Pn is the conjugate-gradient vector at the n-th iteration 
with initializing   . The vector sequence Pn 
is computed by

 Here

RESULTS
We present three experiments that demonstrate the above de-
scribed super-resolution algorithm.

The experiments are applied to scale-up an image on both 
directions by a factor s=3. Each high-resolution image for train-
ing is firstly blurred by separable filter both horizontally and 
vertically, and then it is down-sampled by a factor 
s=3.There-fore, the scaled-down image zl is one-ninth of the 
original im-age size. The image xl is created by bicubic 
interpolation of  zl, with the original size.

Extraction of features from the low-resolution images is 
done using four filters that perform first and second horizon-
tal and vertical derivatives. These filters are applied such that 
only sampled pixels are used in the filtering computation. 
Thus, the patch size used is n = 9.

Figure 1 shows the first experimental result, where Fig. 
1a is the test image used for the super-resolution experiment, 
which is extracted from the original one shown in Fig. 1b at 
both directions by a factor s= 3 ; Fig. 1c shows the correspond-
ing consequential image with the proposed method. For com-
parison, the result only with sparse representation and training 
method is also shown in Fig. 1d. 

Figure 2 shows the second experimental result, of which 
Fig. 2a is the experimental image used for super-resolution, 
extracted from the original image (Fig. 2b) at both directions 
by a factor s= 2 , while Fig. 2c is the corresponding result with 
the proposed method. For comparison, Fig. 2d is the result 
only with sparse representation and training method.

The L1 error norm is not sensitive to outliers by assigning 
the same weights (+1 or −1) to all errors (small and large). 
However, the L1 norm produces an estimator with higher vari-
ance than L2 norm. As a result, when the residual errors are 
approximately Gaussian, L1 norm does not perform as well as 
L2 norm. Moreover,               is not differentiable at zero, the 
gradient descent algorithm used by Zhang and Lam (16) will 
introduce numerical instability in the iteration process (20).

To increase the robustness to large errors while still be-
ing effective to small approximately Gaussian errors, Huber 
et al used Huber function in fidelity term for measuring the 
difference between the estimated HR image and the captured 
LR images. Huber estimator can combine the behaviour of 
L2 norm when the errors are small, while maintaining the L1 
norm’s reduced sensitivity to larger errors (17, 18). To in-
crease robustness further, some redescending M-estimators 
have been explored recently in multiframe SR reconstruction.
An alternate M-estimator using error norm satisfies the above 
requirements as follows (19),
 p (x,a)= a √ a2 + x2 - a2
where a is a positive number. This scale parameter is used to 
specify the error value at which the influence switches from 
behaving linearly to behaving like a constant.

With the parameter a fixed,                 when x is small 
enough and   when x is relatively large. Using 
the norm in Eq [6], the fidelity term of our robust SR estima-
tion is 

where a is the threshold parameter. And the solution can be 
obtained by the following minimization problem

  

Generally, the SR image reconstruction is often an ill-posed 
inverse problem because of insufficient additional informa-
tion of HR image (2). Therefore, regularization technique is 
necessarily applied in SR to well pose this problem. The solu-
tion for the regularized SR methods is given by

where F(X), called the fidelity term, measures the closeness of 
an estimated HR image to the captured LR images. The term R 
(X), called the regularization term, is utilized to regularize the 
problem and to achieve a stable solution to the problem. The 
scalar λ is the regularization parameter to balance the weight 
between the fidelity term and the regularization term. As Eq 
[12], the functional to be minimized is defined by

where             is the first differential of HR image X, and a1 , 

[14]

 [15]

 [16] 

Fig. 1: The original image and consequential high-resolution images of 
the first experiment. (a) test image, (b) original high-resolution image, (c) 
high-resolution image produced with proposed method, (d) high-resolution 
image only with sparse representation and training method.
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Figure 3 shows the third experimental result; Fig. 3a is the 
experiment image used for super-resolution, extracted from 
the original image (Fig. 3b) at both directions by a factor s=3 

, while Fig. 3c shows the corresponding consequential image 
with the proposed method. For comparison, the results only 
with sparse representation and training method are also shown 
in Fig. 3d.

DISCUSSION
We can observe from Figs. 1–3 that the high-resolution im-
age obtained with the proposed method has some advantage 
on visual effect by post-processing the scaled-up images with 
sparse representation and training method, while making 
theimages appear blurry. The results are consistent with the 
characteristics of two kinds of algorithms. How to restrain the 
artifacts and reduce the effect of blurring is the key issues of 
the proposed method. Some further improvements that can be 
considered are:

• Appropriate parameter a1, a2 should be chosen respect-  
     ively for tradeoff the effective region of L1 and L2.
• Appropriate parameter a1, a2 should be chosen for bal-

Fig. 2: The test image and corresponding high-resolution images of the 
second experiment. (a) test image, (b) original high-resolution image, (c) 
high-resolution image produced with proposed method, (d) high-resolution 
image only with sparse representation and training method.

Fig. 3: The original image and consequential high-resolution images of 
the third experiment. (a) test image, (b) original high-resolution image, (c) 
high-resolution image produced with proposed method, (d) high-resolution 
image only with sparse representation and training method.

      ancing the weight between the fidelity term and the reg-
     ularization term.
•  A region based post-processing method can be applied

to process different regions of the scaled-up image.

CONCLUSION
The paper used a method which combines sparse signal repre-
sentation and image dictionary learning with adaptive M-esti-
mator to implement single-image super-resolution. The algo-
rithm can be carried out to preserve the profile, sharp edges 
and details of the original image while enlarging the image. 
The consequential image with proposed algorithm is prior to 
the sparse-representation and training method only. However, 
further work with optimizing the choice of parameters needs 
to be performed.
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