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Clinical and Therapeutic Implications of Histone Acetylation in Breast Cancer
SK Riaz, M Saeed, MFA Malik

ABSTRACT

The contribution of epigenetic changes in triggering breast cancer initiation, promotion, 
progression and metastasis is an established fact. Altered expression profiling of several genes on 
DNA is also influenced by histone modifications. In this review, the role of those enzymes 
regulating histone modifications is discussed. These enzymes are termed as histone 
acetyltransferases (HATs) and his-tone deacetylases (HDACs). Understanding of the mode of 
action of these enzymes will be helpful in exploring their antagonistic role on histone DNA 
complex. In addition to this, the significance of potential histone deacetylases inhibitors (HDIs) as 
potential cancer therapeutic marker is also discussed. 
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Implicaciones clínicas y terapéuticas de la acetilación de las histonas en el cáncer de 
mama

SK Riaz, M Saeed, MFA Malik

RESUMEN

La contribución de los cambios epigenéticos a desencadenar la iniciación, promoción, progresión 
y  metástasis del cáncer de mama es un hecho establecido. El perfil de expresión alterado de varios 
genes en el ADN es también influenciado por las modificaciones de las histonas. En este estudio  se 
discute el papel de las enzimas que regulan las modificaciones de las histonas. Estas enzimas son 
denominadas histonas acetiltransferasas (HATs) e histonas deacetilasas (HDACs). La comprensión 
del modo de acción de estas enzimas será útil en la exploración de su papel antagónico en el com-
plejo de las histonas de ADN. Además, también se discute la importancia de los potenciales inhi-
bidores de desacetilasas de histonas (IDH) como potencialles marcadores terapéuticos del cáncer.
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INTRODUCTION
Genetic, epigenetic and environmental factors contribute to 
breast cancer tumorigenesis. According to a World Health 
Organization (WHO) published report, breast cancer is in-
cluded among the top five most deadly cancers in women. A 
cascade of events encompassing chromosomal aberrations, 
genomic aneuploidies and loss of cell cycle was responsible 
for carcinogenesis. Both inherited and acquired mutations, 
either on tumour suppressors or protoncogenes, have signif-

icant contribution to cancer development. High penetrance of 
germline mutations on tumour suppressors (BRCA1, BRCA2 
and TP53) in affected cancer patients with positive familial 
history was observed (1). These mutations were less frequent-
ly observed in sporadic cancer patients (2, 3). However, sub-
stantial involvement of epigenetic changes including altered 
chromatin structure, methylation and acetylation profiling has 
been observed in both inherited and sporadic breast cancer 
patients (4).

These epigenetic anomalies also regulate tumour suppres-
sor protein expression as observed in sporadic cases of can-
cers. Effect of these changes on various genes in the context 
of different types of cancers has also been reported in the 
literature. Inactivation of von Hippel-Lindau (VHL) in re-
nal (5), AT rich interactive domain 1 A (ARID1A) in ovarian 
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and breast (6, 7), isocitrate dehydrogenase 1 (IDH1) in brain 
(8) and KMT2 in breast cancer (9), 0-6 methylguanine DNA 
methyltransferase (MGMT) in glioblastoma (10), Werner 
syndrome RecQ helicase-like (WRN) in cervical cancer (11) 
and mutL homolog 1 (MLH1) in colorectal and endometrial 
cancer (12, 13) and mesenchymal related tumours (14) have 
also been reported. Earlier, epigenetic silencing of BRCA1 
via promoter methylation has also been reported in breast and 
ovarian cancer patients (15). 

Association of epigenetics with breast cancer with a special 
focus on histone acetylation and deacetylation has also been 
explored in this review. Numerous factors responsible for 
these changes and their relevance to breast cancer initiation 
and progression have been discussed in subsequent sections.
Chromatin is epigenetically regulated by numerous mecha-
nisms affecting DNA methylation, or histones. Histone mod-
ification may include methylation, acetylation and phosphor-
ylation (16, 17). These epigenetic changes lead to chromatin 
remodelling, resulting in switching on or off of several genes 
(18, 19).

Histone structure and target sites for acetylation
Chromatin consists of repeated nucleosome units. Each nucle-
osomal core includes 146 bp DNA wrapped around a histone 
octamer (20). This octameric structure comprises two sets of 
four core histone proteins (H2A, H2B, H3 and H4). Histone 
(H1) is responsible for linking two neighbouring nucleosomal 
cores. Histone core contains an unstructured N-terminal tail 
(20–30 residues) and a C-terminal globular domain (70–90 
residues). The N-terminal tail is responsible for formation of 
histone octamer structure, whereas the unstructured portion 
contains many residues suitable for different covalent mod-
ifications like acetylation (21, 22). Multiple lysines, present 
either on N-terminal tail or in globular domain of histones 
H3 and H4, are ideal targets for acetylation. These variants of 
core histones and their interplay with methylation, phosphor-
ylation and ubiquitination and DNA methylation also broaden 
the scope of epigenetic control (23). 

Effect of histone acetylation in cellular process
Differential histone acetylation patterning plays a significant 
role in regulating transcription, replication, DNA repair and 
recombination (22). A post-translational acetylation of his-
tone is also closely linked to ageing and other major diseases 
like cancer, retroviral pathogenesis, cardiovascular diseases 
and neurodegenerative disorders (24). Abnormal acetylation 
profiling of histones has an effect on several cellular process-
es which later proceed to cancer development (22, 25). Both 
histone acetyltransferases (HATs) and histone deacetylases 
(HDACs) control transcription by changing the acetylation 
state of histones and other transcription factors found most-
ly in the promoter region. Histone acetylation effectively 
disrupts electrostatic interactions with DNA, leading to de-
creased chromatin condensation and activation of transcrip-
tion from that particular region. In addition to this, numerous 

factors associated with chromatin have shown specific inter-
action with different domains, like the bromodomain found 
in HATs and certain adenosine triphosphate (ATP)-dependent 
chromatin remodelling complexes eg the Swi2/Snf2 complex 
(26, 27). Histone deacetylation represses transcription via 
chromatin condensation.

Histone acetylation: regulation of cell-cycle versus        
metastasis
Tumour cells are usually distinguished by deregulated con-
trol on cell-cycle check points. Altered expression of HATs 
and HDACs do lead to uncontrolled tumour cell proliferation. 
Earlier, drugs related to HDAC inhibitors were designed to 
restrict cell proliferation.  Trichostatin A (TSA), the first spe-
cific HDAC inhibitor, was in fact discovered because it induc-
es cellular differentiation and cell-cycle arrest at G1/S phase 
of mitosis (28). So far, inhibition is mostly associated with 
p53-independent induction of p21WAF1/CIP1 (29, 30). Hence,  
exposure of TSA led to reduced cell invasion, metastasis and 
triggered apoptosis in tumour cells, as observed in gastric can-
cer (31). In a recent study, the anti-proliferative effect of HDIs 
like TSA has also been observed in oestrogen receptor (ER) 
positive tumours. A significant down-regulation of ERα and 
up-regulation of ERβ at both mRNA and protein levels have 
been correlated with this inhibitor (32). 

Classification of histone acetyltransferases and histone 
deacetylase
Histone acetyltransferases and HDACs are part of large mul-
tisubunit protein complexes (33). Histone acetyltransferases 
are categorized into three main groups: Gcn5 (general control 
non-derepressible 5)-related N-acetyltransferases (GNATs), 
cAMP binding protein (CBP) and MYST (33). The CBP 
group is unique to metazoans, while members of GNAT and 
MYST families are present in a variety of hosts ranging from 
yeast to humans.

Histone deacetylases are responsible for acetyl removal 
from lysine resides of histone tails and non-histones. These 
are grouped into four classes where class I includes HDAC 1, 
2, 3 and 8. Class I is mainly restricted to the nucleus. Class II 
comprises HDAC 4, 5, 6, 7, 9 and 10, which play a significant 
role in regulation of signal-dependent nucleocytoplasmic traf-
ficking. Class III contains seven sirtuins Sir2 (tu), SIRT1–7. 
Localization of these members either in the nucleus or cyto-
plasm is still nuclear. Class IV consists of only one member, 
HDAC11, with a sequence similarity to class I and II members 
and is mainly localized in the nucleus [Figure] (25). 

In the subsequent sections, HATs and HDACs link to breast 
cancer disease progression is explored.

Histone acetyltransferases family and its role in breast 
cancer
The (GNAT) General control non-derepressible 5-related 
N-acetyltransferases family
Several conserved sequence motifs are shared by members of 
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this family (34). Humans have two Gcn5-like proteins, name-
ly PCAF (p300/CBP-associated factor) and GCN5 involved 
in regulation of transcription and cell-cycle progression (35, 
36). Over-expression of PCAF may affect this differently de-
pending upon the downstream elements activation. Up-regu-
lation of PCAF leads to cell-cycle progression by activating 
E2F while in others it leads to growth arrest by activating p53. 
Hence, HAT activity of PCAF has a crucial role in tumour 
formation (37). 

BRCA1 and BRCA2 mutations significantly contribute to 
breast carcinogenesis (38, 39). Histone acetyltransferases ac-
tivity of hGCN5 seems to be an essential co-regulator complex 
in BRCA1-mediated gene regulation (40). Similarly, BRCA2 
also interacts with PCAF (41). Interaction among PCAF and 
BRCA2 is also influenced by other proteins including a co-ac-
tivator called GRIP1 via activation domain (AD1 and AD2) 
and androgen receptor (AR) cooperation (42). A mechanis-
tic understanding of interactions among BRCA1/BRCA2 and 
GCN5/PCAF still remain to be elucidated in relation to breast 
cancer progression.

The p300/CBP family
Members involved in this family are homologous                        
co-activators of transcriptional machinery. Expression of 
these proteins also regulates cell growth, transformation, 
differentiation and apoptosis. cAMP-binding protein was 
discovered as a co-activators of transcriptional machinery. 
Expression of these proteins also regulates cell growth, trans-
formation, differentiation and apoptosis. cAMP-binding pro-
tein was discovered as a co-activator of CREB, a transcription 
factor (43), while p300 was isolated from adenoviral onco-
genic protein E1A as its target (44). Recombinant CBP/p300 
has been shown to acetylate all four histone molecules with a 
relatively reduced substrate specificity when compared with 
other HATs. Apart from histones, CBP/p300 acetylates a wide 
variety of transcription regulatory proteins like tumour sup-
pressor p53 (45). Anti-proliferative effects of p53 are medi-
ated by C-terminal domain acetylation which is critical for 
ubiquitination and genome stability (46).

The MYST family
In humans, the presence of five m embers b elonging t o this 
family has been observed. It includes HBO1 (HATbound 
to Orc1), MOZ (monocytic leukaemia zinc finger protein), 
MORF (MOZ-related factor), MOF (males absent on the 
first) and Tip60 [Tat-interacting protein of 60kDa] (37). 
HBO1 acts as a co-regulator for many nuclear hormone 
receptors interacting with the human origin recognition 
complex (47). Up-regulation of HBO1 in various subsets of 
primary cancers has also been observed (48). Over-
expression of HBO1 is observed in testis, breast, ovary, 
stomach, bladder and oesophageal cancers (49). Association 
of MOZ and MORF expression with leukaemia is already 
established (50, 51). However, their association with breast 
cancer progression has yet to be explored. Activity of MOF 
in cultured mammalian cells is found in response to DNA 
damage when studied in breast cancer (52, 53). Involvement 
of Tip60 in DNA repair and apoptosis via modulating Myc 
and p53 has also been published (54–56). Hence, MYST role 
in inducing tumour suppression or aggravation is also 
influenced by molecular cross-road interactions and 
signalling pathways.

Histone deacetylation and its role in breast cancer             
Histone deacetylase activity established tumorigenesis by 
deacetylation of histone H4 at lysine 16 (4). Histone deacetyl-
ase abnormal expression has also been associated with cancer 
and it has significance as a therapeutic target. A brief outline 
of HDACs has also been mentioned in the Table.

Class I

Class IIa

Class IIb

Class III 
(sirtuins)

Class IV

HDAC 1, 2, 3      Nucleus
HDAC 8	            Cytosol

HDAC 4, 5, 7      Tissue specific

HDAC 6               Cytoplasm
HDAC 10	            Nucleus and 

cytoplasm

SIRT 1, 6, 7          Nucleus
SIRT 2 Cytosol
SIRT 3, 4, 5          Mitochondria 

HDAC 11             Nucleus

Mediate gene 
repression in 
response to DNA 
damage, cell 
proliferation, cell 
cycle control and 
apoptosis

Differentiation and 
development of 
vascular, cardiac, 
immune and ner-
vous systems

Development of 
breast stem cells
Not known

DNA repair, 
oxidative stress, 
metabolism and 
ageing

Development of 
oligodendrocyte 
and immune     
system response

Over-expression

Over-expression 
and mutation

Over-expression

Variable

Not known

HDAC	  Types	         Localization	    Functions	    Expression

Table: Classification of histone deacetylases 

Figure: Classification of histone acetyltransferases (HATs) and histone 
deacetylases (HDACs).
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Class I HDACs 
Class I includes HDAC 1, 2, 3 and 8, which are mainly           
restricted to the nucleus. Expression of Class I HDACs is uni-
versal in all tissues. They apply a powerful catalytic effect 
on histone lysine residues. Histone deacetylases and HDAC2 
are analogous in structure and have functional significance in 
response to DNA damage, cell proliferation, cell cycle control 
and apoptosis, therefore, they play a vital role in physiolo-
gy and development of an organism (57, 58). Furthermore, 
HDAC8 is primarily localized in the cytosol and hence its ex-
pression is critical for differentiation of smooth muscle cells 
(59). Class I HDACs contain extremely conserved deacety-
lase domain with short amino- and carboxy-terminal (60). 
Class I HDACs mediate gene repression as a component of 
a multi-protein complex. The Sin3, CoREST (corepressor of 
RE1 silencing transcription factor) and Mi-2/NurD (nucleo-
some remodelling deacetylase) complexes contain HDAC1 
and 2 as their catalytic subunit, while HDAC3 is generally 
employed on targets by the N-CoR (nuclear receptor core-
pressor)/SMRT (silencing mediator for retinoid and thyroid 
receptors) complex. So far, there is no evidence of existence 
of HDAC8 as being a part of protein complex (60).

Deregulation of the Class I subfamily members of HDACs 
is found invariably in several cancers. Over-expression of 
HDAC1 has been investigated in breast, gastric, pancreatic, 
lung, prostate and hepatocellular carcinomas which in most 
cases is linked with poor prognosis (61–63). Histon deacety-
lases and HDAC3 expression can also serve as prognostic 
marker in breast cancer because of its correlation with ER 
and progesterone receptor (PR) expression (64). Using tissue 
microarray analysis for malignant mesenchymal tumours, lev-
els of HDAC2 were found to be elevated in comparison to 
HDAC1 (65). Over-expression of class I HDAC is also linked 
with poor prognosis. A thorough insight for HDAC expression 
profiling with breast cancer progression is still an area that 
require further investigation.

Class II HDACs
Class II has further been subdivided into two subsets.

Class IIa HDACs 
Class IIa has tissue-specific expression. Members of Class 
IIa are HDAC 4, 5 and 7. Class IIa HDACs have repressive 
impact over the vascular system the immune system and the 
brain. Members of Class IIa HDACs contain a long regula-
tory N-terminal domain flanking the conserved deacetylase 
domain which controls tissue-specific expression mediated by 
co-repressors (66). Phosphorylation of serine residues in the 
amino terminal determines signal localization inside the cell. 
Catalytic activity of histone deacetylase domain still needs to 
be explored. Class IIa HDACs act as a component of the re-
pressor complex SMRT/N-CoR (67). 

Histone deacetylases 4 expression in breast cancer was 
higher in comparison to bladder, renal and colorectal cancer 
(68). Expression dysregulation or HDAC4 mutation is also 

associated with breast cancer (69). HDAC5, in association 
with TBX3, represses p14 in breast cancer cells and stimulates 
cell proliferation (70). HDAC5 also participates in the pro-
gression of replication fork in cancer cells, hence maintaining 
the structure of heterochromatin (71). HDAC7 plays a part in 
cell growth by repressing reprimo, a tumour suppressor gene 
and cell cycle inhibitor, in association of ERα (72). HDAC7 
interacts with ACTN4 in breast cancer cells to promote cancer 
cell proliferation by enhancing transcriptional activity of ERα 
(73).

Class IIb HDACs 
Two members of the class IIb subfamily are HDAC6 and 
HDAC10. HDAC6 is found mainly in the cytoplasm. It con-
sists of a carboxy-terminus zinc finger and two deacetylase 
domains. Its major target in cytoplasm is α-tubulin. HDAC10 
is localized in both the nucleus and cytoplasm and it also 
has an extra deacetylase domain. The substrates specific for 
HDAC10 still remain unidentified (74).

Expression of HDAC6 has been found elevated in tumor-
igenesis (75). Expression of HDAC6 in breast cancer is also 
associated with enhanced survival. HDAC6 level is signifi-
cantly correlated with tumour grade, size and positive ER 
and PR. HDAC6 may serve as a prognostic marker for breast 
cancer development as well as a predictive indicator of sensi-
tivity to hormonal therapy (76). However, no significant cor-
relation of HDAC6 expression with breast cancer tissues has 
been established (77). HDAC6 has been reported to affect the 
development of breast stem cells by deacetylating chaperone 
Hsp90 which results in inhibition of activation of steroid re-
ceptor-mediated transcription (78). Involvement of HDAC10 
has not yet been established in cancer initiation or progres-
sion. 

Class III HDACs – sirtuins 
A diversified involvement of sirtuins in a variety of biological 
functions related to DNA repair, oxidative stress, metabolism 
and ageing has been observed. Sirtuins are found in different 
compartments of cell like SIRT1, SIRT6 and SIRT7 and are 
mostly present in the nucleus. SIRT2 is localized in the cyto-
sol and SIRT3, 4 and 5 mainly exist in the mitochondria (79). 
Current studies suggest an association of sirtuins to cancer. 
However, similar to other HDACs, sirtuins also have a tumour 
suppressor as well as pro-oncogenic function in cancer. Like 
other HDACs, abnormal expression of many sirtuins is pres-
ent in many types of cancer. Expression of SIRT3 and SIRT7 
is high in breast cancer, while SIRT3 demonstrates variable 
expression in different types of breast cancer, in which it can 
be up-regulated or down-regulated (80, 81).

Class IV HDACs 
Histone deacetylase 11 is presently the only member in Class 
IV HDAC. HDAC11 has conserved residues in the catalytic 
domain which is common in Cass I and Class II HDACs (82). 
HDAC11 expression is high in the brain, kidney, testis, skel-
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etal muscle and heart but little is known about its function. It 
has been linked with the development of oligodendrocyte and 
immune system response (83, 84). Limited studies have prov-
en the potential function of HDAC11 in breast carcinogenesis. 

Histone deacetylase inhibitors: New era of therapeutics 
Aberrant HDAC activity has been documented in a variety of 
tumour types and so HDAC inhibitors are being developed as 
anticancer therapeutics. Currently available HDAC inhibitors 
target a variety of HDAC enzymes with Class 1 (HDAC 1, 2, 
3 and 8), Class 2 (HDAC 4–7 and 9–10) and Class 4 (HDAC 
11) activity. Modest clinical benefits were previously reported
with relatively weak HDAC inhibitors such as valproic acid 
and phenylbutyrate in advanced solid tumours or haematolog-
ic malignancies (85). More potent HDAC inhibitors including 
both class-specific inhibitors (entinostat and romidepsin) and 
pan HDAC inhibitors (vorinostat, belinostat and panobinos-
tat) have been developed recently. 

Research which has been conducted up to now supports 
the exploration of HDIs in breast cancer therapy. Vorinostat, 
an HDI, stimulates differentiation or growth arrests in various 
human cancers including breast carcinoma (86, 87). Vorinos-
tat also tends to reduce tumour prevalence in rat mammary 
tumour development induced by 40 % NMU (88). In vitro 
investigations provided proof signifying that vorinostat pre-
cludes clonogenic growth of ER-negative and ER-positive 
breast cancer cell lines by invigorating G1 and G2/M cell cy-
cle, arrest followed by apoptosis (89). Vorinostat administered 
in low concentrations is also associated with cell deposition 
mainly in G1 phase of the cell cycle, and elevated concentra-
tions of vorinostat initiate growth arrest primarily in G2/M 
phase of the cell cycle (86). Histone deacetylase inhibitor to 
lessen transcriptional repression in preclinical breast cancer 
models has also been examined. Accumulation of acetylated 
H3 and H4 histone tails in combination with re-expression of 
a functional ER in ER-negative breast cancer cell lines has 
been observed with a novel HDAC inhibitor, scriptaid (90). 
Treatment of ER-negative breast cancer cell lines with vori-
nostat is associated with reactivation of silenced ER, as well 
as downregulation of DNMT1 and EGFR protein expression 
(91). Epigenetically reactivated exposure of MDA-MB-231 
breast cancer cells to tamoxifen sensitivity restored ER-neg-
ativity following treatment with both HDAC (TSA) and 
DNMT inhibitors [DAC] (92). Entinostat has been shown to 
induce not only re-expression of ERα, but also the androgen 
receptor and the aromatase enzyme (CYP19) both in vitro and 
triple-negative breast cancer xenografts (93). In addition, the 
combination of entinostat and letrozole resulted in a signif-
icant and durable reduction in the xenograft tumour volume 
when compared to treatment with either agent alone. These 
experiments have provided the strong rationale for combining 
epigenetic modifiers with hormonal therapy in breast cancer 
clinical trials (94). Several studies indicate a strategy which 
combines both HDAC and DNMT inhibitors for efficacious 
silencing of genes and restoration of response to tamoxifen 

and aromatase inhibitors (90, 93, 95).
Association of RARβ in inducing tumour suppression of 

epithelial cells has been observed. RARβ reactivation also, 
along with both HDAC and DNMT inhibitors, significantly 
increases tumour suppression (96). Clinical studies investi-
gating the retinoids in various breast cancer populations to 
date have yielded disappointing results, but perhaps the lack 
of efficacy observed relates to the fact that RARβ expression 
was not evaluated in the majority of these studies (97). Pre-
treatment of various tumour cell lines with HDAC inhibitors 
increases the cytotoxicity of chemotherapy. Administering the 
HDAC inhibitor after chemotherapy did not achieve the same 
results, suggesting that pretreatment with these agents may 
open the chromatin structure and thus facilitate an enhanced 
anticancer effect of chemotherapy drugs that target DNA (98). 
In breast cancer cell lines with amplification and over-ex-
pression of HER2, HDAC inhibitor use depleted HER2 by 
attenuation of its mRNA levels and promotion of proteosomal 
degradation. HDAC inhibition was also enhanced because 
of apoptosis induced by trastuzumab, docetaxel, epothilone 
B and gemcitabine (99). HDAC inhibitors also significantly 
enhance trastuzumab-induced growth inhibition in trastu-
zumab-sensitive, HER2-over-expressing breast cancer cells, 
providing a strong rationale for clinical studies with this com-
bination in patients with HER2-positive disease (100, 101). 
Hence, further studies in this regard will aid in the develop-
ment of a potential therapeutic remedy where breast cancer 
research is concerned.  

CONCLUSION 
Epigenetics research has revolutionized cancer diagnosis and 
therapeutics. Acetylation pattern of chromatin is a milestone 
but it still remains to be completed after sequencing of the 
whole epigenome. Inhibitors of HDAC do overcome thera-
peutic challenges in breast cancer research. Deciphering these 
challenges will unleash novel scientific perspectives in the 
HDAC inhibitors, a future prospect for personalized medicine.
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