Early Risk Stratification with Dipyridamole Stress Echo in a Patient with Intermediate Lesion in the Right Coronary Artery, 24 Hours after Percutaneous Coronary Intervention

S Carmargo, RD Rampersad

INTRODUCTION
The natural history of single vessel coronary disease is generally benign except for single vessel occlusion in acute coronary syndrome (ACS). Several techniques, including pharmacological stress echocardiography, have been proposed for risk stratification. This is particularly effective in patients with single-vessel disease with intermediate stenotic lesions (50–60%), based on the echocardiography appearance of wall motion abnormalities, especially following post percutaneous coronary intervention (PCI). Stress echocardiography is a valuable diagnostic tool when intravascular ultrasound (IVUS) and fractional flow reserve (FFR) are not readily available.

CASE REPORT
We report a case of a 59-year old male patient with stage II hypertension, diabetes mellitus and dyslipidaemia, referred to cardiology clinic with stable angina class CCS II/IV, with echocardiography showing good ejection fraction of 62% and no regional wall abnormalities. A coronary angiogram showed significant right coronary artery disease, with a 60–70% stenosis in the middle segment and a 95% distal lesion. The left coronary artery showed no significant disease. The patient underwent PCI with stenting using a drug eluting stent of the distal lesion, with no intervention on the proximal lesion. Intravascular ultrasound or FFR equipment were not available, therefore, it was decided to perform dipyridamole stress echo at 24 hours post-angioplasty to assist in the decision on further intervention of the proximal lesion. This showed negative findings for inducible myocardial ischaemia in the inferior wall. The patient was, therefore, discharged home on medical treatment. A follow-up stress echo two months later confirmed the early post-intervention findings.

REFERENCES

Keywords: Angioplasty, dipyridamole, echocardiography, stress

CASE REPORTS


