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Modelling the Effects of Hearing Aid Algorithms on Speech and Speaker 
Intelligibility as Perceived by Listeners with Simulated Sensorineural Hearing 
Impairment
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• Hearing Aid Fitting and Performance Issues

• Computational representation of the speech signal after processing by the human auditory peripheral system

• Representing Hearing Impairment Computationally

• The Novel Computational Model

• Experiments and Results

• Discussion and Conclusion

• References

• Acknowledgements
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Research Problem

 The WHO estimated that the number of people worldwide with disabling hearing impairment increased from 

42 million in 1985 to about 360 million in 2011 and will reach 630 million by 2030 . 

Disabling hearing impairment may prevent a person from having verbal communication, especially in noisy 

environments.  

Disabling hearing impairment causes: Sadness and depression, dementia, worry and anxiety, and it affects the 

employability of the individual

Disabling hearing impairment is a health and economic problem

• It impacts the individual, families, communities and countries.

Prevalence and Impact of Disabling Hearing Impairment
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The Research Problem

Hearing Impairment is generally classified as conductive, sensorineural or a mixture of 

both. 

Conductive HI can be remedied by treatment or surgery; however, sensorineural hearing 

impairment (SHI) is permanent. 

The Hearing Aid is the main aural rehabilitation device and restores hearing to almost 

normal levels for conductive hearing impairment.

Partial restoration is achieved for listeners with sensorineural hearing impairment (SHI).

• Its effectiveness depends on the severity of the hearing loss.

Classifying Hearing Impairment and the Hearing Aid
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The Research Problem

Current hearing aids do not perform well in noisy environments (Kochkin, 2010; 
Dillon, 2012; Harvey B. Abrams, 2015; Gygi and Ann Hall, 2016; Lopez-Poveda et 
al., 2017)

Fitting of hearing aids can take days or even weeks (Fontan et al., 2017; Solheim 
et al., 2018).

Dissatisfaction with hearing aids causes individuals to

• Stop wearing the hearing aids

• Avoid noisy environments

Therefore the rehabilitation that the device aims to achieve is not fully met.

Hearing Aids Limitations
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The Research Problem

Development of new hearing aid algorithms generally require clinical testing on 

multiple hearing impaired individuals. The challenges faced are:

• Time and expense to recruit hearing impaired individuals

• Hearing impairment varies between individuals making it difficult to design robust 

experiments using multiple listeners.

• It can take weeks for individuals to adjust to “new” speech signals from the hearing 

aid.

Hearing Aid Algorithm Development Challenges
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The Research Problem

Fitting hearing aids typically require the audiologist to conduct speech 

intelligibility tests on the listeners using different hearing aid settings.

This testing can be laborious and time consuming (take days or weeks)

Fitting may not be optimal because the listener become fatigue

Hearing Aid Algorithm Fitting Challenges
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Possible Solution

Develop a computational model that can replace hearing impaired 
listeners during listening tests.
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Research Objective

This research aims to develop a computational model (CM) that will give 

insights into methods that can be used to create an application capable 

of replacing SHI listeners in listening tests used to evaluate hearing aid 

algorithms' performance and the fitting of hearing aids.

The CM may aid in the rapid development and testing of hearing aid 

algorithms and reduce the time it takes to fit hearing aids.
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METHODOLOGY
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Developing a Physiologically Inspired 
Computational Model

Using ratemaps (spectral features) to represent the processing of sound 

in the human auditory periphery (Brown and Cook 2004).  

Using an hearing impairment simulator configured with an audiogram to 

represent hearing loss.

Using a GMM-HMM machine learning model to represent knowledge of  

impaired speech.
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Speech and Hearing
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Hearing 
The Human Auditory Peripheral System
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The Human Auditory Peripheral System
©2001 Brooks/Cole – Thompson Learning

The uncoiled cochlea
Munkong, Rungsun, and Biing-Hwang Juang. "Auditory perception and cognition."
IEEE signal processing magazine25, no. 3 (2008).



Mimicking Frequency Analysis in the Cochlea
Ratemap (Rate32) Feature Extraction
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Audiograms used in the Experiments
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Hearing Impairment Simulation
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Using methods from Desloge et al (2010), sensorineural 
hearing impairment 
was modelled using:

1. Additive Threshold Noise  (TN)
• For threshold loss <= 60 dB HL
• Spectrally shaped white noise added to signal 

to simulate hearing loss.

2. Multiband Expansion (MBE)
• For threshold loss > 60 – 70 dB HL
• Additive threshold noise alone would be 

uncomfortably high. 
• Signal is attenuated and loudness recruitment 

is also simulated.
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Spectrograms and Ratemaps of Clean and Hearing Impaired 
Simulated Grid utterances "Place green at y 1 soon"
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Representing Hearing Impairment Computationally

The approach mimics (in a crude way) how an hearing impaired listener 
learns and recognises speech.
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Hearing Aid Algorithms

Two hearing aids algorithms were used in the study, namely:

• NAL-RP (National Acoustic Laboratory  - Revised Profound)

o This is a linear algorithm that uses the audiogram to calculate the gain at specific frequency bands to 

maximised speech intelligibility at levels preferred by the hearing aid wearer (Byrne, 1991)

• SED (Spectral Envelope Decimation) Frequency Lowering Algorithm

o The SED is a frequency lowering algorithm that moves high frequency sounds into lower frequency 

regions.  This is achieved by decimating by two the amplitude spectrum of each frame from a start 

frequency and end frequency; the phase at each frequency remains the same (Alexander et al., 

2014).

19



Spectrograms of NAL-RP and SED HA Algorithms Processing
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Spectrograms showing original utterance (left panel) and 
utterance processed by NAL-RP (right panel)

Audiogram [60 65 65 70 80 70]

Spectrograms showing Original utterance (left panel) and 
linear frequency utterance (right panel).  Start frequency of 
4 kHz and end frequency of 10 kHz;



The Novel Computational Model
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Experiment with Listeners and the Model
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Twenty (20) Normal-Hearing 
Listeners with hi1 and hi2 
simulated hearing impairment 
participated in experiments.

The tasks of the listeners and 
model were to identify the 
letters and digits heard in the 
utterances.

HA Algorithms used
- No processing (NOP)
- NALRP
- NALRPSED (NALRP + SED )



RESULTS
Using Listener’s Results to Validate the Model’s Performance
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Average Keyword Intelligibility Score using different HA algorithms
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(D) HI2-Listener's Keyword Recognition Scores
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(A) HI1-Model's Keyword Recognition Scores

 

 

digit

letter

nop nalrp nalrpsed
0

20

40

60

80

100

HA Algorithm

P
e
rc

e
n
ta

g
e

 C
o

rr
e
c
t

(B) HI2-Model's Keyword Recognition Scores
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Correlation Results

Model Vs Listener -Digits 
Hi1: r = 0.9994 (p-value = 0.0226)
HI2: r = 0.9987 (p-value = 0.0324)

Model Vs Listener - Letters
HI1: r = 0.9997 (p-value 0.0148) 
HI2: r = 0.9986 (p-value = 0.0332)



Predicting Digits Intelligibility
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(A) Listeners Vs Model - Digit Intelligibility Scores using HI1 processing

NOP Algorithm, rho=0.51

 

 

Listener

Model

3 8 9 2 4 5 1 0 6 7
0

50

100

In
te

lli
g
ib

ili
ty

 (
%

)

(B) NALRP Algorithm, rho=0.20
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(C) NALRPSED Algorithm, rho=0.09
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(D) Listeners Vs Model - Digit Intelligibility Scores using HI2 processing
NOP Algorithm, rho=0.29
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(E) NALRP Algorithm, rho=0.60
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(F) NALRPSED Algorithm, rho=0.57

pval= 0.131 pval= 0.423

pval= 0.570 pval= 0.068

pval= 0.8 pval= 0.086



Predicting Letters Intelligibility
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(A) Listeners Vs Model - Letter Intelligibility Scores using HI1 processing
NOP Algorithm, rho=0.30
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(B) NALRP Algorithm, rho=0.52
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(C) NALRPSED Algorithm, rho=0.41
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(D) Listeners Vs Model - Letter Intelligibility Scores using HI2 processing
NOP Algorithm, rho=0.12
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(E) NALRP Algorithm, rho=0.11
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(F) NALRPSED Algorithm, rho=0.12

pval= 0.145 pval= 0.116

pval= 0.008 pval= 0.617

pval= 0.045 pval= 0.552



Predicting Individual Speaker Intelligibility

27

28 26 30 1 32 9 19 14 10 5 6 2 8 13 3 12 27 17
0

20

40

60

1 28 26 10 14 27 8 3 30 32 6 13 17 2 19 9 5 12
0

50

100

In
te

lli
g
ib

ili
ty

 (
%

)

28 26 1 10 8 14 27 30 32 13 3 6 2 17 19 12 9 5
0

50

100

11 15 16 25 29 22 20 21 33 23 24 31 18 4 34 7

Listeners Vs Model - Female and Male Speakers Intelligibility Scores with HI2 processing
NOP Algorithm, rho(male)=0.29; rho(female)=0.82; rho(both)=0.49

 

 
Listener

Model

29 20 33 16 21 24 31 22 11 4 34 25 15 7 18 23

NALRP Algorithm, rho(male)=0.50; rho(female)=0.69; rho(both)=0.58

16 20 21 29 22 24 33 34 11 31 25 15 4 18 7 23

NALRPSED Algorithm, rho(male)=0.32; rho(female)=0.49; rho(both)=0.40

pval= 0.2366 (male), 0.0001 (Female)

pval= 0.036 (male), 0.0031 (Female)

pval= 0.194 (male), 0.05 (Female)



Discussion
Using Pearson correlation of listeners’ and model’s results with NOP, NAL-RP and NAL-RP + SED HA 

algorithms, and hi1 and hi2 simulated hearing impairments.  Statistical significant results were 
obtained for the following intelligibility measures:

• Average Keyword Intelligibility – For all HA algorithms and hi1 and hi2 simulated HI. 

• Letter Intelligibility – Using NALRP and NALRP-SED for hi1 simulated HI.

• Speaker Intelligibility – Using NALRP and NALRP-SED for male and female speakers using hi2 HI.

The model successfully predicted the improvement in the intelligibility of keywords using NAL-RP HA 
algorithm. 

No noticeable improvement was detected using the SED HA algorithm, for both listeners and model.
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Conclusion and Further Work
 The model’s deviation from human performance may be related to:

• The listeners may need more time to adjust to the new speech signals.

• GMM-HMM has an inherent weakness in modelling speech signals because of its independence assumption 

between feature vectors and its inability to model the fine structure of the speech signal.

• Require longer listening test so that listeners hear more keywords from a particular speaker using a specific HA 

algorithm.  This may improve the prediction of individual keywords and speakers intelligibility.

 Future work

• Use Deep Neural Network and HMM (DNN-HMM) or Recurrent Neural Networks (RNN) to implement the ASR 

system in the computational model.

• Use listeners with real sensorineural hearing impairment.
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