THE UNIVERSITY OF THE WEST INDIES

DEPARTMENT OF LIFE SCIENCES

PROGRAMMES & SYLLABUSES
ACADEMIC YEAR 2007/2008
ANY REFERENCE IN THIS BROCHURE TO CXC QUALIFICATIONS SHOULD BE INTERPRETED TO MEAN GENERAL PROFICIENCY GRADES I OR II AND ALSO GRADE III OBTAINED SINCE 1998
The Department of Life Sciences currently offers 4 B.Sc. Majors (Botany, Zoology, Experimental Biology and Environmental Biology) and 2 B.Sc. Options (Microbiology, and Biology with Education) and two Minors (Botany and Zoology).

The Botany Major

Aim: To enable students to gain detailed knowledge of selected aspects of the plant sciences through practical and theoretical studies and to foster the desire for their continued exploratory investigations in the plant sciences.

A Major in Botany requires a minimum of 24 credits from Part I and must include:

- BL12C/BIOL1016 Cells, Molecular Biology & Genetics
- BL12B/BIOL1261 Diversity of Organisms,

and a total of 32 credits from Part II which must include:

- BL20J/BIOL2011 General & Molecular Genetics,
- BL20N/BIOL2014 Ecology,
- BT21B/BOTN2011 Seed Plants,
- BT22A/BOTN2012 Plant Physiology, plus

8 credits from Advanced Level ‘BT/BOTN’ courses and
8 credits from Advanced Level ‘BT/BOTN’ or ‘BL/BIOL’ Courses or MICR2252.

- **BL12C/BIOL1016 (Cells, Molecular Biology & Genetics) now replaces BL10J/BIOL1013 (Cell Biology and Genetics)**
- **BL12B/BIOL1261 (Diversity of Organisms) now replaces BL10LB/BIOL1063 (Animal Diversity) and BL10MB/BIOL1015 (Plant Diversity)**

The Botany Minor

Aim: To enable students to gain a fundamental knowledge in the plant sciences through practical and theoretical studies of the interrelationships between plants and their environment; the anatomy, morphology, taxonomy, classification and physiology of higher plants; the principles of genetics.

A Minor in Botany requires a minimum of 24 credits from Part I and must include:

- BL12C/BIOL1016 Cells, Molecular Biology & Genetics and
- BL12B/BIOL1261 Diversity of Organisms, and

a total of 16 credits from Part II comprising:

- BL20J/BIOL2011 General & Molecular Genetics,
- BL20N/BIOL2014 Ecology,
- BT21B/BOTN2011 Seed Plants, and
- BT22A/BOTN2012 Plant Physiology.
The Zoology Major

Aim: To provide a detailed understanding and appreciation of the interrelatedness of the processes of evolution, natural selection and ecosystem functions, as well as the structural and functional organization of animals and animal-like protists. The graduate will also be equipped with the resources, capacity and foundation to further explore the animal kingdom.

A Major in Zoology requires a minimum of 24 credits at Part I and must include:

- BL12C/BIOL1016 Cells, Molecular Biology & Genetics and
- BL12B/BIOL1261 Diversity of Organisms, and

A total of 32 credits from Part II, which must include:

- BL20K/BIOL2012 Evolutionary Biology,
- BL20N/BIOL2014 Ecology,
- Z20G/ZOOL2012 Functional Organisation of Animals I (Maintenance Systems),
- Z20H/ZOOL2013 Functional Organisation of Animals II (Coordination, Protection & Movement),

8 credits from Advanced Level ‘Z/ZOOL’ courses, and
8 credits from Advanced Level ‘Z/ZOOL’ or ‘BL/BIOL’ Courses or MICR2252.

The Zoology Minor

Aim: To provide a basic understanding of the processes of evolution, natural selection, interrelationships with the environment, as well as the structural and functional organization of animals and animal-like protists.

A Minor in Zoology requires:

A total of 16 credits from Part II comprising –

- BL20K/BIOL2012 Evolutionary Biology,
- BL20N/BIOL2014 Ecology,
- Z 20G/ZOOL2012 Functional Organisation of Animals I (Maintenance Systems) and
- Z 20H/ZOOL2013 Functional Organisation of Animals II (Coordination, Protection & Movement).
Double Major in Botany and Zoology

Aim: The double major in botany and zoology is a combination of the aims for the individual majors and will therefore enable students to gain detailed knowledge of selected aspects of the animal and plant sciences as well as the requisite skills to further explore the structure and functional organization of these organisms.

A Double Major in Botany and Zoology requires a total of 64 credits from Part II; these must include 32 credits from:

- BL20J/BIO12011 General & Molecular Genetics,
- BL20N/BIO12014 Ecology,
- BT21B/BOTN2012 Seed Plants,
- BT22A/BOTN2012 Plant Physiology,
- BL20K/BIO12012 Evolutionary Biology,
- Z 20G/ZOOL2012 Functional Organisation of Animals I (Maintenance Systems),
- Z 20H/ZOOL2013 Functional Organisation of Animals II (Coordination, Protection & Movement),
- BL20P/BIO12015 Biometry,

32 credits from Level 3 with no more than 16 credits from either the Environmental Biology or Experimental Biology Double Major syllabuses.

Major in Experimental Biology

Aim: To provide a detailed understanding of the principles, mechanisms and techniques available to explore through scientific experimentation the physiology, immunology, parasitology, virology, pathology, and genetic/propagative potential of selected organisms.

A Major in Experimental Biology cannot be taken with any other major or minor because of the number of credits required.

The Experimental Biology major requires:

a minimum of 24 credits from Part I which must include –

- BL12C/BIO12016 Cells, Molecular Biology & Genetics and
- BL12B/BIO12012 Diversity of Organisms

and 64 credits from Part II which must include –

- BL20N/BIO12014 Ecology,
- BL20K/BIO12012 Evolutionary Biology,
- BL20J/BIO12011 General & Molecular Genetics,
- BL20P/BIO12015 Biometry,
- BT22A/BOTN2012 Plant Physiology,
- BT21B/BOTN2011 Seed Plants,
- Z 20G/ZOOL2012 Functional Organisation of Animals I (Maintenance Systems),
and 32 credits from the following courses –

- BC21M/MICR2211 Microbiology,
- BL38A/BIOL3017 Virology,
- Z32C/ZOOL3020 Insect Biology & Systematics,
- *BL30M/ZOOL3011 Mycology,
- BT37Q/BIOL3016 Plant Health,
- Z32G/ZOOL3021 Pest Management,
- Z30G/ZOOL3015 General Parasitology,
- *Z31C/ZOOL3018 Fish Biology,
- Z30M/ZOOL3017 Immunology,
- Z30B/ZOOL3012 Metabolic Physiology,
- Z30A/ZOOL3011 Sensory & Neuromuscular Physiology,
- *BL30K/BIOL3012 Soil Biology,
- BT38B/BOTN3016 Plant Biotechnology,
- *BT34A/BOTN3015 Principles of Plant Breeding,
- BT38D/BOTN3017 Principles of Horticulture,
- BT33B/BOTN3018 Medicinal & Economic Botany,
- BL39C/BIOL3018 Project.

* Not offered in 2007/8 academic year.

Major in Environmental Biology

Aim: To provide a detailed understanding of the concepts, strategies and practices available to scientifically investigate and analyse species, communities and ecosystems towards the successful monitoring, management and development of strategies for sustainable use of these systems.

A Major in Environmental Biology cannot be taken with any other major or minor because of the number of credits required.

The Environmental Biology major requires:

- a minimum of 24 credits from Part I which must include:
 - BL12C/BIOL1016 Cells, Molecular Biology & Genetics and
 - BL12B/BIOL1261 Diversity of Organisms
- and a total of 64 credits from Part II which must include –
 - BL20N/BIOL2014 Ecology,
 - BL20K/BIOL2012 Evolutionary Biology,
 - BL20J/BIOL2011 General & Molecular Genetics,
 - BL20P/BIOL2015 Biometry,
 - BT22A/BOTN2012 Plant Physiology,
and 32 credits from the following courses –

Z 32C/ZOOL3020 Insect Biology & Systematics,
BL32E/BIOL3020 Conservation Biology,
BL39D/BIOL3019 Caribbean Biodiversity,
BT33A/BOTN3014 Forestry, Agroforestry & Sustainable Development,
*Z 31C/ZOOL3018 Fish Biology,
Z 31F/ZOOL3019 Fisheries & Aquaculture Technology,
BL33D/BIOL3021 Freshwater Ecology,
*BT31A/BOTN3011 Phycology,
BL31E/BIOL3014 Marine Ecology I: Biological Oceanography,
BL31F/BIOL3015 Marine Ecology II: Benthic Communities,
BL31G/BIOL3023 Coral Reef Biology
BL31A/BIOL3012 Coastal Management,
*BL30K/BIOL3012 Soil Biology,
BT37Q/BIOL3016 Plant Health,
BL39C/BIOL3018 Project,
BC21M/ BIOC2211 Microbiology,
BC31M/MICR3213 Applied & Environmental Microbiology,
GL32A/GEOL3002 Caribbean Geology,

Not all elective courses are available every year, and certain combinations of courses are limited by timetable constraints.

* Not offered in 2007/8 academic year.
OPTION 11 MICROBIOLOGY

Aim: To provide a comprehensive knowledge of the biology, phylogeny, ecology, and diversity of microorganisms, and to develop laboratory skills and familiarity with the basic microbiological methods. This Option is taught jointly between the Department of Life Sciences and the Biochemistry Section, Department of Basic Medical Sciences.

Part I
Thirty six (36) credits which must include the following:
- BL12C/BIOL1016 Cells, Molecular Biology & Genetics (6 credits)
- BL12B/BIOL1261 Diversity of Organisms (6 credits)
- BC10M/BIOC1011 Introductory Biochemistry (6 credits)
- C 10J/CHEM1901 Introductory Chemistry A (6 credits)
- C 10K/CHEM1902 Introductory Chemistry B (6 credits)

Part II
Sixty four (64) credits as follows:

Forty (40) core credits:
- BC21C/BIOC2312 Molecular Biology I (4 credits)
- BC21D/BIOC2014 Bioenergetics & Cell Metabolism (8 credits)
- BC21M/MICR2211 Microbiology (4 credits)
- BL20J/BIOL2011 General & Molecular Genetics (4 credits)
- BL38A/BIOL3017 Virology (4 credits)
- *BL30M/BIOL3011 Mycology (4 credits)
- BC31M/MICR3213 Applied & Environmental Microbiology (4 credits)
- **BT31A/BOTN3011 Phycology (4 credits)

Either BL39C/BIOL3018 Project (4 credits)
Or BC36A/BIOC3413 Laboratory Project (4 credits)

* Not offered in 2007/08 academic year- replaced with BL23D/MICR2252.
** Not offered in 2007/08 academic year- replaced with BC34M/MICR3214 Molecular Microbiology

Plus Twenty four (24) credits from courses listed below:
- BC34C/BIOL3312 Molecular Biology II (4 credits)
- BC35C/BIOT3113 Biotechnology I (4 credits)
- BC35D/BIOT3114 Biotechnology II (4 credits)
- BL20P/BIOL2015 Biometry (4 credits)
- Z 30G/ZOOL3015 General Parasitology (4 credits)
- Z 30M/ZOOL3017 Immunology (4 credits)
- *BL30K/BIOL3012 Soil Biology (4 credits)
- BT37Q/BIOL3016 Plant Health (4 credits)
- BT38B/BOTN3016 Plant Biotechnology (4 credits)
- Z 32G/ZOOL3021 Pest Management (4 credits)

Not all elective courses are available every year, and certain combinations of courses are limited by timetable constraints.
OPTION 4

BIOLOGY WITH EDUCATION

Aim: To provide a solid foundation in selected aspects of plant and animal science and expose students to the practice of science pedagogy.

The option was designed to focus on biology with less emphasis on education courses as it is aimed at students lacking in biology but who, through experience or previous courses, had exposure to the requisite teaching skills.

Part I

Twenty four (24) credits in Level 1 biology in Pure & Applied Science courses including:
BL12C/BIOL1016 Cells, Molecular Biology & Genetics and
BL12B/BIOL1261 Diversity of Organisms.

Foundation courses in Education should be taken with Part I courses in Pure & Applied Sciences.

Year 1

Semester I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL12C/BIOL1016</td>
<td>Cells, Molecular Biology & Genetics</td>
<td>(6 credits)</td>
</tr>
<tr>
<td>FPAS Level 1 course</td>
<td></td>
<td>(6 credits)</td>
</tr>
<tr>
<td>ED20C/EDPS2003</td>
<td>Motivation and the Teacher</td>
<td>(6 credits)</td>
</tr>
<tr>
<td>Either ED20M/EDCU2013</td>
<td>Introduction to the Curriculum</td>
<td>(3 credits)</td>
</tr>
<tr>
<td>Or ED10T/EDTL1020</td>
<td>Introduction to Teaching & Learning</td>
<td>(3 credits)</td>
</tr>
</tbody>
</table>

Semester II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPAS Level 1 course</td>
<td>(BC10M/BIOC1011 highly recommended)</td>
<td>(6 credits)</td>
</tr>
<tr>
<td>BL12B/BIOL1261</td>
<td>Diversity of Organisms</td>
<td>(6 credits)</td>
</tr>
<tr>
<td>ED30D/EDTK3004</td>
<td>Educational Technology</td>
<td>(3 credits)</td>
</tr>
<tr>
<td>Either ED34H/EDSC3408</td>
<td>Environmental Education</td>
<td>(3 credits)</td>
</tr>
<tr>
<td>Or ED10U/EDTL1021</td>
<td>Planning for Teaching</td>
<td>(3 credits)</td>
</tr>
</tbody>
</table>

Part II

A major in Biology (Life Sciences) 32 credits consisting of BL20J/BIOL2011 General & Molecular Genetics, BL20P/BIOL2015 Biometry, BL20N/BIOL2014 Ecology, BL20K/BIOL2012 Evolutionary Biology, BT21B/BOTN2011 Seed Plants, BT22A/BOTN2012 Plant Physiology, Z 20G/ZOOL2012 Functional Organisation of Animals I (Maintenance Systems), and Z 20H/ZOOL2013 Functional Organisation of Animals II (Coordination, Protection & Movement), plus 6 credits from the Department of Educational Studies each semester as follows:
Year 2

Semester I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL20J/BIOL2011</td>
<td>General & Molecular Genetics</td>
<td>4 credits</td>
</tr>
<tr>
<td>BL20P/BIOL2015</td>
<td>Biometry</td>
<td>4 credits</td>
</tr>
<tr>
<td>ED24G/EDSC2407</td>
<td>Teaching Methodologies in Science</td>
<td>3 credits</td>
</tr>
<tr>
<td>ED 24E/EDSC2405</td>
<td>The Psychology of Science Teaching and Learning</td>
<td>3 credits</td>
</tr>
</tbody>
</table>

Semester II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT21B/BOTN2011</td>
<td>Seed Plants</td>
<td>4 credits</td>
</tr>
<tr>
<td>BT22A/BOTN2012</td>
<td>Plant Physiology</td>
<td>4 credits</td>
</tr>
<tr>
<td>ED34Q/EDSC3417</td>
<td>Introduction to Secondary Science Practicals</td>
<td>3 credits</td>
</tr>
<tr>
<td>ED20U/EDTL2021</td>
<td>School Based Experience I</td>
<td>3 credits</td>
</tr>
</tbody>
</table>

Year 3

Semester I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL20K/BIOL2012</td>
<td>Evolutionary Biology</td>
<td>4 credits</td>
</tr>
<tr>
<td>BL20N/BIOL2014</td>
<td>Ecology</td>
<td>4 credits</td>
</tr>
<tr>
<td>ED30T/EDSC3020</td>
<td>The Teacher as Researcher</td>
<td>3 credits</td>
</tr>
<tr>
<td>ED34C/EDSC3403</td>
<td>Assessment in Science Teaching</td>
<td>3 credits</td>
</tr>
</tbody>
</table>

Semester II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z 20G/ZOOL2012</td>
<td>Functional Organisation of Animals I (Maintenance Systems)</td>
<td>4 credits</td>
</tr>
<tr>
<td>Z 20H/ZOOL2013</td>
<td>Functional Organisation of Animals II (Coordination, Protection & Movement)</td>
<td>4 credits</td>
</tr>
<tr>
<td>ED30Q/EDTL3017</td>
<td>School Based Experience II</td>
<td>3 credits</td>
</tr>
<tr>
<td>ED30S/EDSC3019</td>
<td>Classroom Enquiry</td>
<td>3 credits</td>
</tr>
</tbody>
</table>
COURSE DESCRIPTIONS

PRELIMINARY COURSES

BL05A/ BIOL0011 PRELIMINARY BIOLOGY I
(6 P-Credits) Semester 1 Level 0

Aim: To equip students with a basic knowledge of biological principles and processes.

Objectives: Upon successful completion of the course students should be able to:

1. describe the chemical and biological foundation for life
2. describe the role of cell division mechanisms in the processes of sexual and asexual reproduction
3. distinguish between the various forms of prokaryotic and eukaryotic organisms
4. explain the basic principles involved in evolution

Pre-requisites: CSEC Biology or equivalent

Course Content:

- Biological techniques
- Biological chemistry: chemicals of life; enzymes; cells and tissues; cell division; genetics
- Variety of life: viruses, bacteria, protists, fungi, plants and animals
- Evolution
- Mechanisms of speciation

Mode of Delivery:
36 hours of lectures, 12 hours of tutorials and 72 hours of laboratory exercises involving experiments demonstrating biochemical and biological processes and principles; studies of living/fresh and preserved plants and animals to demonstrate biodiversity.

Evaluation:

Final Examinations:
- One 2-hour theory paper (answers required as essays) 30%
- One 2-hour comprehensive paper 30%

Coursework:
- One in-course theory test 6%
- Two in-course practical tests 24%
- Laboratory reports 10%

Prescribed text:
Aim: To equip students with a basic knowledge of the systems in plants and animals.

Objectives: Upon successful completion of the course students should be able to:
1. explain the relationships between organisms and the environment and between each other
2. describe the role of energy flow and the cycling of nutrients in the sustenance of ecosystems
3. describe the general form and function of plant life
4. describe the general form and function of animal life

Pre-requisites: CSEC Biology or equivalent

Course Content:
- Organisms and the environment
 - Levels of ecological organisation
 - Energy Flow
 - Biogeochemical cycles
- Systems in animals and plants:
 - Nutrition
 - Respiration
 - Photosynthesis
 - Transport
 - Coordination and control
 - Movement and support
 - Excretion and osmoregulation
 - Reproduction, growth and development

Mode of Delivery:
36 hours of lecture, 12 hours of tutorials and 72 hours of laboratory exercises involving the study of living/fresh and preserved organisms and prepared slides to demonstrate the relationship between structure and function of the systems in plants and animals.

Evaluation:
Final Examinations:
One 2-hour theory paper (answers required as essays) 30%
One 2-hour comprehensive examination 30%
Coursework:
One in-course theory test 6%
Two in-course practical tests 24%
Laboratory reports 10%

Prescribed text:
LEVEL 1 COURSES

Students who have passes in CAPE (A-level) Biology or equivalent OR Preliminary Biology (BL 05A/ BIOL0011 & BL 05B/ BIOL0012) but who are not fully matriculated will be allowed to register for twelve (12) of the eighteen (18) Level 1 credits in the Department.

BL12C / BIOL1016 CELLS, MOLECULAR BIOLOGY AND GENETICS
(6 credits) Semester 1 Level 1

Aims: 1. To expose students to a variety of mechanisms involved in the functioning of eukaryotic and prokaryotic cells, and the identification, replication and transmission of genetic material
 2. To provide an introduction to the identification, replication and transmission of genetic material
 3. To develop skills in microscopy and other basic biological skills

Objectives: Upon successful completion of this course, students should be able to:
 1. Describe the basic functional processes in cells and their regulation, cell division and the cell cycle
 2. Outline the essential principles and processes of molecular biology
 3. Explain Mendelian inheritance, quantitative traits, linked genes, crossing-over, gene mapping, sex determination, and gene frequencies in natural populations.
 4. Demonstrate competency in microscopic techniques used to study the structural organization of cells and tissues
 5. Demonstrate an understanding of basic techniques in molecular biology

Pre-requisites: A pass in one of the following:
 Preliminary Biology I and II (BL05A/BIOL0011) and BL05B/BIOL0012)
 or CAPE Unit 1 & 2 ('A' level) Biology or equivalent

Course Content:

- **Cells**
 Microscopical techniques to study living and fixed cells
 Structural organization of cells
 Specialization in cells
 Basic functional processes in cells and their regulation
 Mitosis and Meiosis

- **Molecular Biology**
 The nature of genes
 DNA replication
 Transcription
 Protein synthesis
 Control of gene expression
 PCR and sequencing
• Genetics
 Mendelian inheritance
 Probability, binomial theorem and chi-square test
 Quantitative traits
 Linkage, crossing over and mapping
 Sex linkage and sex determination
 Gene frequencies in natural populations

• Practical Work:
 Observation of living cells and permanent microscopical preparations.
 Making microscopical preparations.
 Interpretation of electron micrographs.
 DNA isolation, restriction digestion and agarose electrophoresis
 Exercises on Mendelian crosses and gene frequencies

Mode of Delivery:
 Lectures 36 hours Didactic and interactive
 Tutorials 12 hours Interactive
 Practicals 72 hours

Evaluation:
 Final Examination: One 2-hour theory paper 50%
 Course Work: Laboratory reports 10%
 (usually one per practical class)
 One practical examination 20%
 One 1-hour short-answer paper 20%

Recommended Text:

BL12B / BIOL1261 DIVERSITY OF ORGANISMS
(Already offered at St. Augustine)
(6 credits) Semester 2 Level 1

Aim: To introduce students to the Kingdoms of living organisms, within a phylogenetic framework, through the study of selected organisms

Objectives: Upon successful completion of this course, students should be able to:
1. Identify the most common phyla
2. Demonstrate understanding of the nature and consequences of Different types of body organization
3. Outline evolutionary relationships among the major groups of organisms
4. Demonstrate competency in microscopic techniques used to study the structural organization of cells and tissues
5. Demonstrate competency in the basic practical techniques associated with the study of living organisms
Pre-requisites:
A pass in one of the following:
Preliminary Biology I and II (BL05A/BIOL0011) and BL05B/BIOL0012)
or CAPE Unit 1 & 2 ('A' level) Biology or equivalent

Course Content:
- Introduction to organic evolution and the study of biodiversity
- Classification of organisms into kingdoms
- Diagnostic characters and bionomics of major taxa within the kingdoms
- Cell, tissue and organ-system levels of body organization
- Symmetry
- Colonization of land habitats

Practical Work:
- Exercises conducted mainly in the laboratory to complement the material covered in lectures
- Students will be encouraged to develop their powers of observation and the desire for exploration

Mode of Delivery:
Lectures 36 hours Didactic and interactive
Tutorials 12 hours Interactive
Practicals 72 hours

Evaluation:

Mona Campus
Final Examination: One 2-hour theory paper 50%
Course Work: 50%
 Laboratory reports 10%
 (usually one per practical class)
 One practical examination 20%
 One 1-hour short-answer paper 20%

St. Augustine Campus
Final Examination 60%
Course Work: 40%
 Laboratory notebook 10%
 Practical test 20%
 Theory test 10%

Prescribed Text:

Highly Recommended Text:
LEVEL 2 COURSES
In order to proceed to Level 2 courses in Life Sciences, candidates must have successfully completed ANY TWO OF THE FOLLOWING: BL10J/BIOL1013, BL10L/BIOL1063 or BL10M/ BIOL1015. However, ALL three level 1 courses are required for Majors and Minors in Life Sciences.

BL20J/BIOL2011 GENERAL AND MOLECULAR GENETICS
(4 Credits) Semester 2 Level 2
Aim: To provide a comprehensive and balanced account of genetics and genomics by integrating the subfields of classical genetics, molecular genetics, cytogenetics and population genetics.

Objectives: Upon successful completion of this course students should be able to:

1. explain the basic processes of gene transmission, mutation, expression, regulation, cloning, recombination and genome mapping
2. describe the experimental methods used by geneticists
3. explain the development of genetics and genomics over time and current trends

Pre-requisite: BL10J/ BIOL1013 and either BL10L/BIOL1063 or BL10M/BIOL1015

Course Content:
- The course deals primarily with the physical and molecular basis of heredity
- The nature of the genetic apparatus from molecules to chromosomes of viruses, bacteria and higher organisms
- Gene controlled pathways and morphogenesis
- Gene regulation and differentiation in higher organisms
- Gene mutations
- Genetic consequences of structural and numerical changes in chromosomes
- Extra-nuclear inheritance
- Recombinant DNA and gene manipulation
- Gene mapping quantitative traits
- Gene frequency and genetics of populations
- Dynamics of micro-evolution
- The role of new, improved varieties (cultivars) of crops in agriculture crop improvement through genetics

Mode of Delivery

24 hours of lecture, 6 hours of tutorials, 36 hours of field and laboratory work which emphasizes the preparation of the root tip squashes (mitosis), preparation of the anther squashes (meiosis), mapping of the prokaryotic and eukaryotic genomes, chromosomal mutations, electrophoresis of DNA and proteins, genetic structure of natural plant/animal populations.
Evaluation:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Examination:</td>
<td>70%</td>
</tr>
<tr>
<td>One 2-hour theory paper</td>
<td></td>
</tr>
<tr>
<td>Coursework</td>
<td>30%</td>
</tr>
<tr>
<td>One 2-hour practical test</td>
<td>20%</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td>10%</td>
</tr>
</tbody>
</table>

Prescribed text:

BL20K/BIOL2012 Evolutionary Biology
(4 Credits) Semester 1 Level 2

Aims:
1. To establish the fact of evolution and present natural selection as an observable process.
2. To demonstrate in a dynamic and interdisciplinary fashion the relevance of evolution to global issues.

Objectives:
1. identify the mechanisms of evolutionary changes
2. describe the experimental and analytical methods used in evolutionary science
3. explain how population and genetic models can be applied to real life issues

Pre-requisites: BL 10L/BIOL1063 AND BL 10J/BIOL1013

Course Content:
- A historical perspective to evolution and variation
- Polymorphism, Hardy-Weinberg equilibrium, selection, migration and genetic drift in relation to population size
- Evolution below the species level, clines, deception and sex-ratio, with special reference to man
- Speciation, phylogeny, and the evolution of the hominids

Mode of Delivery:
24 hours of lectures, 6 hours of tutorials, 36 hours of field and laboratory work, which emphasizes the quantitative approach to evolutionary biology with the consideration of design of experiments, simple statistics and the presentation of results from laboratory and field exercises.

Evaluation:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Examination:</td>
<td>65%</td>
</tr>
<tr>
<td>One 2-hour theory paper</td>
<td></td>
</tr>
<tr>
<td>Course Work:</td>
<td>35%</td>
</tr>
<tr>
<td>One 2-hour practical test</td>
<td>20%</td>
</tr>
<tr>
<td>Comprehensive tests (2 X 5%)</td>
<td>10%</td>
</tr>
<tr>
<td>Laboratory report</td>
<td>5%</td>
</tr>
</tbody>
</table>
BL20L/BIOL2013 DIVING TECHNOLOGY FOR AQUATIC SCIENTISTS
(4 credits) Summer Level 2

Aim: To train students in SCUBA diving to CMAS (The World Underwater
Federation) 2 star diver standard and expose them to techniques for
conducting scientific work underwater.

Objectives: On successful completion of this course students will be able to:

1. explain the principles of the physiology of diving and safe diving
 practices
2. SCUBA dive safely to a depth of 20 meters
3. perform a complete in-water rescue including CPR and oxygen
 administration
4. conduct an underwater survey of marine life using SCUBA diving
 skills

Pre-requisite: Completion of Part I in the FPAS (Regulation 15) and successful
completion of a swim test.

Course Content:

- **Principles of diving**
 Pressure and buoyancy; atmospheric and water pressure; factors affecting
 buoyancy
 Diving equipment; the aqualung and accessory apparatus
 Decompression tables; planning and conducting no-stop dives and dives
 requiring decompression stops

- **Physiology of diving**
 The human life support system; physiology of circulatory and respiratory
 systems. Effect of pressure on human body; adverse effects of gases; role of
 nitrogen in decompression sickness (DCS); signs and symptoms of DCS

- **Safe diving practices**
 Dive planning and preparation; entry and exit methods
 Diver self-help techniques; situation avoidance and assessment
 Diver rescue techniques; emergency ascents
 Artificial ventilation; cardiopulmonary resuscitation; oxygen administration;
 first aid
 Adventurous diving; deep diving; night diving; wreck diving; drift diving;
 Diving from small boats

- **Diving with a purpose**
 Fauna and flora of the coral reef
 Underwater search techniques
 Underwater navigation; natural navigation and use of underwater compass
 Underwater sampling, survey and recovery methods
 Underwater photography
Mode of delivery:

22 hours of lecture, 4 of tutorial and 47 hours of practical involving snorkeling and diving, aqualung diving skills, diver self-help, diver rescue, underwater navigation, diving with a surface marker buoy and boat diving procedures. Each student must complete 10+ dives with confidence-building exercises progressing to 20 m depth.
Exercises in underwater scientific survey techniques.

Evaluation:

Final Examination:
- One 2 hour theory paper 50 %
- Course Work: 50 %
 - One 1-hour MCQ paper (practical questions) 10 %
 - Open water Competence Assessments 30 %
 - Project 10 %

BL20N/BIOL2014 ECOLOGY
(4 Credits) Semester 1 Level 2

Aim: To introduce the scientific study of the interrelationships between and among organisms and between organisms and all aspects of the living and non-living environment.

Objectives: Upon successful completion of this course, students should be able to:

1. outline population distributions and the abiotic and biotic factors which influence them
2. identify species interactions and evaluate the interdependence of species
3. design and execute basic sampling techniques appropriate for any population or community of organisms
4. describe concepts of community productivity, succession, cycling and transformation

Pre-requisites: BL10L/BIOL1063 and BL10M/BIOL1015

Course Content:
- Ecology and its domain, autecology and synecology; distribution and abundance
- Geographic range habitat and niche. Abiotic and biotic environment, populations communities and ecosystems
- Ecological role of abiotic factors (climatic and edaphic) on plant and animal populations Population performance along physical gradients
- Population structure and demography; population change over time, growth models, dispersal, life tables and resource allocation patterns
• Species interactions: competition, predation, herbivory, commensalism, ammensalism, protocooperation and mutualism

• Photosociology methods of describing communities; community classification, concepts and attributes

• World biomes, adaptive features of the vegetation of world biomes and the worldwide distribution of vegetation; Major vegetation formations of Jamaica

• Community metabolism, photosynthesis, ecophysiology, nutrient cycling and energy flow Primary and secondary production, ecological efficiency and energy transfers

• Primary and secondary succession, allogenic and autogenic succession, xerarch and hydrarch succession

Mode of Delivery:
24 hours of lecture, 6 hours of tutorials, 36 hours of field and laboratory work including a weekend field trip.

Evaluation:
Final Examination:
One 2-hour theory paper 60%
Course Work:
One 2-hour practical test 20%
Laboratory and field reports 10%
MCQ Test 10%

BL20P/BIOL2015 BIOMETRY
(4 credits) Semester I Level 2

Aims:
1. To provide a foundation in statistical concepts applicable to biological experiments.
2. To give an overview of descriptive methods and tests for one and two variables, using biological examples.
3. To introduce testing relationships between multiple variables.

Objectives:
Upon successful completion of this course the students should be able to:
1. explain basic statistical concepts
2. summarise quantitative biological data using methods of descriptive statistics
3. based on specified criteria, identify appropriate statistical tests for one and two variables
4. apply statistical test procedures and interpret the results
5. describe relationships among multiple independent variables

Prerequisites: BL10L/BIOL1063 and BL10M/BIOL1015
Course Content:
- Data in Biology: types of variables; accuracy and significant figures; data management
- Populations and Samples: statistical populations; the need for samples; sampling procedures
- Descriptive Statistics: frequency distributions; measures of central tendency; measures of dispersion
- The Normal Distribution: probability density functions; properties of the normal distribution; the distribution of sample means; confidence intervals
- Statistical Hypothesis Testing: making decision about populations based on samples; null and alternative hypotheses; alpha and beta error
- One-Sample Hypotheses: hypotheses concerning population parameters; testing goodness of fit
- Testing the relationship between two variables: the nature of a statistical relationship; criteria used to select appropriate tests; overview of major tests
- Applying tests for two variables: contingency tests; analysis of variance; regression and correlation; rank tests; multiple comparisons; assessing validity of statistical assumptions.
- Tests for more than two variables: separating the influences of multiple independent variables on a dependent variable; statistical interaction

Mode of Delivery:
24 hours of lectures, 6 hours of tutorials, 36 hours of practical work involving exercises in solving statistical problems using a software application and by hand.

Evaluation:
Final Examination:
- One two-hour theory paper 60%
- Course Work: 40%
- One 2-hour practical test 20%
- Laboratory reports 20%

Prescribed text:
(5th Edition to be released in 2006- not yet available)

BL23D/MICR2252 EUKARYOTIC MICROORGANISMS
(4 credits) Semester 1 Level 2

Aim: To expose students to the nature and properties of eukaryotic microorganisms, their effects on humans and the environment, and how they can be exploited to provide useful products.

Objectives: Upon successful completion of this course the students should be able to:
1. describe the structure of eukaryotic microorganisms and be able to distinguish them from prokaryotes
2. classify eukaryotic microorganisms
3. describe growth and metabolism in eukaryotic microbes
4. identify and explain strategies for controlling eukaryotic microorganisms
5. outline the role of eukaryotic microorganisms in diseases, the environment, and food industries

Pre-requisites: Mona BL10J/BIOL1013 and either BL10L/BIOL1063 or BL10M/BIOL1015

Cave Hill MICR2251 General Microbiology

Course Content:
An introduction to the biology of the eukaryotic microorganisms: algae, fungi, and protists: their structure and function, reproduction, physiology, behaviour, and ecology.

Mode of delivery:
24 hours of lectures, 6 hours of tutorials and 36 hours of practical work involving laboratory techniques to isolate, culture, and examine the basic characteristics of eukaryotic microorganisms, inclusive of making media, inoculation techniques, aseptic technique, sterilization, and staining.

Evaluation:
Mona
Final Examination: One 2-hour theory paper 60%
Coursework: 40%
One 2-hour practical test 20%
Laboratory reports 20%

Cave Hill
Final Examination: One 3-hour theory paper 60%
Coursework: 40%
In-course test(s)/Assignments 10%
Practical reports 30%

Prescribed Text:
There is no text currently available that covers all the topics at the appropriate level.

Recommended Reading:
BT21B/BOTN2011 SEED PLANTS
(4 Credits) Semester 2 Level 2

Aim: To provide students with the knowledge that is fundamental to the classification of the gymnosperms and angiosperms

Objectives: Upon successful completion of this course students should be able to:
1. identify the morphological and reproductive structures of both living and fossilized gymnosperms
2. identify the possible ancestors of the angiosperms
3. describe the evolution of floral structures
4. outline the modern trends in plant taxonomy
5. collect, describe and identify plant specimens

Pre-requisites: BL10M/BIOL1015 and BL10J/ BIOL1013

Course Content:
- Structure, evolution and significance of the seed plants illustrated by reference to select Gymnosperm and Angiosperm groups
- The significant biological distinction between major groups and the formal processes by which species and higher taxa are derived
- Development of classification systems: Artificial, Natural and Phylogenetic
- Taxonomic value of characters: Morphological, Anatomical, Cytological, Phytochemical, Ecological and Geographical
- Numerical Taxonomy

Mode of delivery:
24 hours of lectures, 6 hours of tutorials, 36 hours of laboratory work involving macroscopic and microscopic examination of plant specimens and slide preparations to illustrate the characteristics taxonomic features of the various groups of the seed-bearing plants; introduction to taxonomic/phyllogenetic keys and to the reproductive and morphological structures of seed plants.

Evaluation:
Final Examination: One 2-hour theory paper 60%
Coursework 40%
 One 2-hour practical test 30%
 Plant collection 10%

Prescribed texts:
Aims:
1. To provide a foundation in the fundamental concepts of plant physiology by describing the functioning, growth and development of flowering plants.
2. To introduce experimental plant science using methods that illustrate basic principles of plant physiology.

Objectives: Upon successful completion of the course, students should be able to:
1. identify the main processes and controls of plant cell growth and differentiation
2. describe developmental stages from germination to flowering, fruiting and senescence and how they are regulated by plant hormones and environmental factors
3. explain water, mineral nutrient and carbohydrate movement in plants
4. explain the difference between the three main pathways of carbon fixation and assimilation and identify their benefits under various environmental conditions
5. undertake, interpret and report basic plant physiological experiments in the laboratory and greenhouse

Pre-requisites: BL10J/BIOL1013 and BL10M/BIOL1015

Course Content:
How plants function at the level of cells, tissues, organs and the whole plant. The physiology of:
- seed germination and dormancy
- growth and differentiation, growth analysis
- control of growth by plant growth regulators
- water relations; mineral nutrition; carbon assimilation; translocation
- photomorphogenesis and photoperiodism
- flowering and fruit development; senescence.

Delivery mode:
24 hours of lectures, 6 hours of tutorials, 36 hours of laboratory and greenhouse work.

Evaluation: Final Examination: One 2-hour theory examination 60%
Coursework: 40%
One 2-hour practical test 20%
Practical quizzes (X 2) 10%
Practical reports 10%

Z20G/ZOOL2012 FUNCTIONAL ORGANIZATION I: ANIMAL MAINTENANCE SYSTEMS
(8 Credits) Semester 2 Level 2

Aims: 1. To equip students with knowledge of the major maintenance systems involved in the functioning of animals and the evolutionary development of these systems
2. To develop knowledge of these systems by examination of appropriate biological materials in the practical classes
3. To develop and improve dissection and other practical zoological skills

Objectives: Upon completion of this course students should be able to:
1. describe the variety of maintenance systems in animals of different organizational levels
2. explain the design and performance of maintenance systems
3. discuss the advantages and disadvantages of the different designs of maintenance systems
4. outline the evolutionary trends visible within these systems
5. dissect and display basic animal systems

Pre-requisites: BL10J/BIOL1013 and BL10L/BIOL1063

Course Content:
- Respiration and respiratory structures
- Circulatory systems
- Feeding and Digestive systems
- Excretory systems and the process of excretion
- Reproduction and reproductive systems

Mode of Delivery:
24 hours of lectures, 6 hours of tutorials and 36 hours of practical work involving laboratory exercises that will parallel the lecture course.

Evaluation:
Final Examination: One 2-hour theory paper 70%
Course Work: One 2-hour practical test 20%
Laboratory reports 10%

Prescribed Text:
Aims:
1. To provide an introduction to the structure and evolutionary development of selected systems (nervous, endocrine, support, integument) in vertebrates and invertebrates.
2. To develop knowledge of these systems by reference to appropriate biological materials in the practical classes.
3. To develop and improve dissection and other practical zoological skills.

Objectives: Upon successful completion of the course students should be able to:
1. describe and explain the structure and evolutionary development of the nervous, endocrine, support and integument systems
2. describe the embryological development of selected structures related to the above mentioned systems
3. recognize and identify the cellular structure of tissues and organs associated with the above systems
4. dissect and display selected animal systems

Pre-requisites: BL10J/BIOL1013 and BL10L/BIOL1063

Course Content:
- Coordination and control: nervous systems, endocrine systems
- Support and locomotion: exoskeleton, endoskeleton, muscular and non-muscular movement.
- Integument

Mode of Delivery:
24 hours of lectures, 6 hours of tutorials and 36 hours of practical work involving laboratory exercises that will parallel the lecture course.

Evaluation:
Final Examination: One 2-hour theory exam 70%
Course Work: 30%
One 2-hour practical exam 20%
Laboratory reports 10%

Prescribed text:

LEVEL 3 COURSES:

BL30K/BIOL3012 SOIL BIOLOGY (Not offered in 2007/08 academic year)
(4 Credits) Semester 1 Level 3

Aim: To increase students’ knowledge of soil as a habitat for diverse forms of life and how environmental factors affect soil biological processes.

Objectives: Upon successful completion of the course, students should be able to:
1. describe the main biotic and abiotic components of the soil environment
2. identify the important biological processes in the soil and effects of changing environmental factors
3. apply laboratory techniques to study the effects of various environmental factors on the activities of soil organisms

Pre-requisites: BL12C/ BIOL1016 and BL20N/BIOL2014

Course Content:
- The soil environment: soil formation, soil abiotic components, soil organisms: prokaryotic and eukaryotic microorganisms, animals and plant parts; biological processes occurring in soil.
- Environmental issues affecting life in the soil: acid rain, metal toxicity, salinity, radioactivity, pesticides, and the introduction of organisms.
- The impact of human activities on soil ecology and biodiversity.

Delivery mode:
24 hours of lectures, 6 hours of tutorials, 36 hours of laboratory and field work.

Evaluation:
One 3-hour Theory examination 60%
Course work 40%
Consisting of:
- In-course test (1 hour) 15%
- Project 15%
- Laboratory reports 10%

Highly Recommended Texts:
Aim: That students will gain an understanding of the behaviour and function of fungi

Objectives: Upon successful completion of the course, students should be able to:

1. Describe the biological characteristics of the major groups of fungi
2. Conduct studies to investigate the behaviour of fungi under various conditions
3. Explain the significance of fungi and their interactions
4. Give accounts of current and developing uses of fungi to man
5. Identify suitable methods for obtaining and preserving various types of fungi

Pre-requisites: BL23D / MICR2252

Course Content:

- The structural and ultrastructural characteristics and the ecological significance of the major groups of fungi of importance in the West Indies
- The influence of genetic, nutritional and environmental factors on fungal growth, differentiation, reproduction and dispersal and germination of spores
- The practical exploitation by man of fungal interactions; of fungal metabolite production; of fungi as sources of food; of the roles of fungi in biotechnology
- Prevention and control of fungal growth responsible for the biodeterioration of commercial products
- Collection and preservation of fungi

Evaluation:

- Theory examination (2 hours) 60%
- Course work 40%
 Consisting of:
 - In-course test (1 hour) 15%
 - Laboratory work 10%
 - Group project 15%

Mode of Delivery:

- Lectures 24 hours
- Laboratory studies 36 hours
- Tutorials 4 hours minimum

Prescribed text:

Recommended reading:

BL31A/BIOL3013 COASTAL MANAGEMENT
(4 credits) Semester 2 Level 3

Aim: To introduce the investigation of natural coastal processes, human interference with natural processes and how plans and actions may protect conserve and restore coastal environments.

Objectives: Upon successful completion of the course, students should be able to:

1. identify the limits, types and contents of the coastal zone
2. know the physical regime and natural processes of the coastal zone
3. evaluate the activities, demands and uses of the coastal zone
4. outline and evaluate management frameworks applicable to the coastal zone.

Pre-requisite: BL20N/BIOL2014
Co-requisite: BL31F/BIOL3015 OR BL31G/BIOL3023

Course Content:

- Coastal Resources
 An examination of the natural resources associated with beaches, reefs, wetlands, estuaries, harbours and off-shore features.
- An examination of the kinds of pollution affecting coastal resources especially organic, oil, pesticide, heavy metal, physical and thermal pollution, their sources, effects and remedies.
- Resource Management Practices
 Coastal surveys, environmental monitoring, water quality criteria, zoning, legislation and enforcement.
 Marine Parks and Conservation Areas
 Their purpose, criteria, development and management.

Mode of Delivery:
24 hours of lecture, 6 hours of tutorials, 36 hours of field and laboratory exercises to illustrate the principles of coastal management.

Evaluation:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>One 3-hour theory paper</td>
<td>60%</td>
</tr>
<tr>
<td>Course Work</td>
<td>40%</td>
</tr>
<tr>
<td>Consisting of one 2-hour practical test</td>
<td>20%</td>
</tr>
<tr>
<td>Laboratory and field reports</td>
<td>10%</td>
</tr>
<tr>
<td>Research and oral presentation</td>
<td>10%</td>
</tr>
</tbody>
</table>

Prescribed text:
Aims: 1. Impart knowledge of the organisms as well as the physical and chemical processes associated with the marine pelagos.
2. Introduce the appropriate methods of measuring and sampling the oceans.

Objectives: Upon successful completion of this course students should be able to:
1. Identify the types of organisms associated with the marine pelagos- their biology, associations and distribution.
2. Describe and evaluate the physical and chemical processes associated with the marine pelagos.
3. Adequately investigate the organisms, habitats and processes of the marine pelagos through “hands on” practical exercises.
4. Analyse, interpret and present their investigations in a scientific report.

Pre-requisite: BL20N/Biol2014. Admission to this course is limited due to the restriction of boat space on field trips.

Course Content:
- Ocean basins- their origin and structure.
- Chemical and physical properties of ocean water.
- Circulation and mixing: currents, waves & tides.
- Marine sediments- their origin and deposition.
- Form and function of planktonic organisms
- Distribution of planktonic organisms
- Primary production and its measurement
- Secondary production and its measurement
- Food chains/food webs in the pelagic province
- Vertical migration and the deep sea pelagos

Mode of Delivery:
24 hours of lecture, 6 hours of tutorial and 36 hours of laboratory and field exercises involving sampling from small boats which illustrate the major aspects of the lecture course. Laboratory sessions which involve field trips off campus necessitate adding 2 hours of travel time to the 6 hours normally used for the practical exercise.

Evaluation:
One 3-hour theory paper 60%
Coursework 40%
Consisting of: Laboratory reports 20%
End of course practical test 20%

Prescribed text:
BL31F/BIOL3015 MARINE ECOLOGY II: BENTHIC COMMUNITIES
(4 Credits) Semester 1 Level 3

Aim: To impart knowledge of the range of habitats, organisms and ecological processes associated with the marine benthic environment as well as introduce the appropriate methods of investigation.

Objectives: Upon successful completion of this course students should be able to:

1. identify and categorise the range of marine benthic habitats.
2. identify the organisms in each habitat as well as their biology and interactions.
3. describe the important physical and chemical processes associated with benthic marine habitats.
4. adequately sample and investigate the organisms, habitats and processes through “hands on” practical exposure.
5. analyse, interpret and present their investigations in a scientific report.

Pre-Requisite: BL20N/BIOL2014. Admission to this course is limited due to the restriction of boat space on field trips.
Co-requisite: BL31E/BIOL3014.

Course Content:
- The nature of the intertidal and sub-tidal benthic environment
- The communities associated with sandy shores
- The communities associated with rocky shores
- Mangrove swamp communities
- Seagrass communities
- Meiofauna
- Symbioses in the sea
- Deep Sea ecology.

Mode of Delivery:
24 hours of lecture, 6 hours of tutorial and 36 hours of laboratory and field exercises involving in the range of habitats which illustrate the major aspects of the lecture course.
Laboratory sessions which involve field trips off campus necessitate adding 2 hours of travel time to the 6 hours normally used for the practical exercise.

Evaluation:
One 3-hour theory paper 60%
Coursework 40%
Consisting of Laboratory reports 20%
End of course practical test 20%

Prescribed Text:
Aim: To provide an introduction to the biology of reef building corals, the ecology of coral communities, and the natural phenomena and anthropogenic factors that impact coral reefs.

Objectives: Upon successful completion of this course students should be able to:

1. Identify Caribbean coral species and describe their biology, distribution and interactions.
2. Describe how reefs are formed and explain the role of the non-coral organisms associated with them.
3. Conduct laboratory and field exercises involved in the investigation of coral reefs.

Pre-Requisite: BL20N/BIOL2014
Co-Requisite: BL31E/BIOL3014 and BL31F/BIOL3015

Course content:
- Biology of scleractinian corals: Anatomy, skeletal morphology, calcification and skeletogenesis, endosymbiosis with zooxanthellae, modes of feeding, reproduction and recruitment, environmental factors that influence growth and distribution.
- A survey of the major groups of reef-associated organisms including other coelenterates, porifera, echinoderms, fishes, and algae.

Throughout the course the emphasis will be on Caribbean coral reefs, but comparisons will be made to reefs from other regions.

Mode of Delivery:
24 hours of lectures, 6 hours of tutorial and 36 hours of laboratory exercises on taxonomy and physiology of corals and other reef-associated organisms, and field exercises on coral reef assessment and monitoring.

Evaluation:
One 3-hour theory examination 60%
Course Work: 40%
Consisting of Laboratory reports 30%
In-course practical tests 10%

Prescribed Text:
BL33D/BIOL3021 FRESHWATER ECOLOGY
(4 Credits) Semester 2 Level 3

Aims:
1. To introduce students to the diversity and taxonomy of freshwater fauna and flora.
2. To introduce the biotic and abiotic factors responsible for controlling the dynamics of freshwater communities.
3. To have students develop the necessary practical skills to undertake basic research in freshwater ecology.

Objectives: Upon successful completion of the course students should be able to:
1. Recognize and identify the common benthic macroinvertebrates taxa found in Jamaica freshwaters.
2. Describe the physico-chemical factors and biotic interactions affecting freshwater communities with special emphasis on effects of anthropogenic disturbance.
3. Demonstrate the skills needed to assess and monitor water quality in freshwater systems.

Pre-requisite: BL20N/BIOL2014

Course Content:

- Introduction and definitions. Classification of freshwaters. Classification of rivers. Physico-chemical composition of river water. Longitudinal zonation of rivers, River Continuum Concept and the applicability of these concepts to the tropics.
Mode of Delivery:

24 hours of lecture, 6 hours of tutorials and 36 hours of mainly field based practical work utilizing a variety of techniques to illustrate freshwater habitats and communities.

Laboratory based analysis of biological material and other data.

Evaluation: One 3-hour theory examination 60%
Course Work 40%
Consisting of one 2-hour practical test 20%
Practical reports 20%

BL38A/BIOL3017 VIROLOGY

(4 Credits) Semester 2 Level 3

Aim: To introduce students to the fundamental concepts of viral structure, classification and pathogenesis.

Objectives: Upon successful completion of the course students should be able to:
1. explain the basic principles of viral structure
2. describe major animal and plant viral groups and the processes of virus replication
3. identify and describe commonly occurring viral diseases of plants and animals and methods of control.

Pre-requisite: BL 20J/BIOL/2011 or BC21C/BIOL2312

Course Content:
- Introduction to virology and the nature of viruses and sub-viral entities
- Structure and replication of RNA viruses, DNA viruses, and viroids
- Methods in Virology: detection, quantification and characterization
- Virus transmission
- Host cell-virus interactions: morphological alterations, biochemistry and molecular biology of the infection process
- Biological consequences of viral infections on organisms and populations; development of control strategies

Mode of delivery:
24 hours of lectures, 6 hours of tutorials, and 36 hours of laboratory exercises involve plant virus transmission, virus purification, electron microscopy, and serology.

Evaluation: Written theory exam (3 hours) 60%
Coursework 40%
Two 1-hour In-course tests 20%
Laboratory reports 20%

Prescribed texts:

BL39C/BIOL3018 RESEARCH PROJECT
(4 Credits) Semester 1 or 2 Level 3

Aim: To equip students with the basic knowledge and skills required to undertake and report on scientific research in the field of biology.

Objectives: Upon successful completion of the course students should be able to:
1. Search information bases for appropriate supporting literature for a given topic.
2. Formulate hypotheses for a proposed piece of scientific research and design appropriate means for testing the same.
3. Collate and analyse data from their research and prepare a report in standard scientific format.

Co-requisite: BL20P/BIOL2015

This course is available to students at the discretion of the Department.

Course Content:
The basics of scientific writing, experimental design, project reporting and presentation.
Aims and means of assessing feasibility of projects.
Techniques in data collection, collation and analysis.
Investigation and written report on an approved topic.

Mode of Delivery:
8 hours of lectures, 2 hours of interactive tutorial sessions and 56 hours of student driven research under the supervision of a member of the academic staff.

Evaluation: Project report 75%
Oral Examination 25%

BL39D/BIOL3019 CARIBBEAN BIODIVERSITY
(4 Credits) Semester 1 Level 3

Aims: The course is designed to:
1. Introduce concepts, patterns and processes in biogeography
2. Develop an appreciation of the uniqueness and diversity of Caribbean flora, fauna and ecosystems.
3. Develop an understanding of the evolution, biogeography and classification of the Caribbean biota.

Objectives: Upon successful completion of this course students should be able to:
1. identify and describe the major ecosystems in the Caribbean
2. provide an overview of the diversity of selected Caribbean taxa
3. describe and evaluate models addressing island biogeography, patterns and the origin of the Caribbean biota
4. relate species distributions to geographic and site factors including human disturbance.
5. evaluate the relevance of Caribbean biodiversity from a regional and global perspective

Prerequisite: BL20N/BIOL2014 and BL20K/BIOL 2012

Course Content:
- Major biomes of the Caribbean islands
- Characteristics of the Caribbean biota
- Island gradients in species diversity
- Adaptive radiation within islands
- Ecology and conservation status of selected taxonomic groups.

Mode of Delivery:
24 hours of lectures applying audiovisual methods including presentation software and video, 6 hours of tutorials, 3 one-day field trips to study the biological diversity in selected habitats and taxonomic groups; and 18 hours for the conduction of a Group project (with 3/4 students per group) studying a biodiversity pattern in the field (18 hours). Project works accounts for 50% of the practicals.

Evaluation: One 3 hour theory exam 65%
Course Work 35%
 Consisting of a project report 25%
 Lab reports 10%

Prescribed Text:

BL 39E/BIOL3020 CONSERVATION BIOLOGY
(4 Credits) Semester 2 Level 3

Aims: 1. To evaluate sources of species extinctions and current threats to biodiversity.
2. To demonstrate strategies for the conservation of threatened species and habitats.
3. To establish the theoretical basis for managing small populations.
4. To establish the social context in which conservation efforts must proceed.

Objectives: On successful completion of the course students should be able to:
1. Describe the history and current status of the human-mediated extinction crisis.
2. Explain how population genetic models can be used to inform conservation efforts directed at endangered species.
3. Outline the values of and threats to biodiversity.
4. Show why island species are particularly vulnerable to anthropogenic impacts such as invasive species.
5. Describe techniques used to control or eradicate invasive species.
6. Explain the theoretical and practical aspects of designing protected areas.

Pre-requisites: BL 20N/Biol2014 and BL20K/Biol2012

Course Content:
- Biological diversity and its values.
- Threats to biological diversity: habitat destruction, exotic species, and over-exploitation.
- Population biology of threatened species.
- Managing threatened species: in-situ and ex-situ.
- Establishing and managing protected areas. Social framework for the conservation of biodiversity

Mode of Delivery:
24 hours of lecture, 6 hours of tutorials and 36 hours of field work in the form of a 2 night camping field trip (Friday to Sunday), which involves an assessment of conservation needs and the implementation of conservation measures in the Hellshire Hills and along the Hellshire coast as well as visiting current conservation projects in the field.

Evaluation: One three-hour theory exam 65%
Course Work 35%
Consisting of laboratory report 10%
Project report 15%
In course test 10%

Prescribed text:

BT33A/BOTN3014 FORREST ECOLOGY, AGROFORESTRY & SUSTAINABLE DEVELOPMENT
(4 credits) Semester 2 Level 3

Aim: To provide an introduction to the world’s tropical rain forests, specifically to describe their structure and functioning, dynamics, succession and regeneration processes, their role in water and nutrient cycling and how disturbance affects these processes.

Objectives: Upon successful completion of this course the students should be able to:
1. identify different forest types, where they occur and how environmental factors influence forest type.
2. identify the role of natural disturbance in forest dynamics and the maintenance of species diversity.
3. explain the importance of forests in the hydrological and nutrient cycles and the effects of anthropogenic disturbance on these cycles.
4. explain how trees improve the soil and ways in which these enhancements can be incorporated in present agricultural systems.
5. use various methods for forest inventory and monitoring.

Pre-requisite: BL20N/Biol2014

Course Content:
- Origins of tropical rain forests
- Origins of tropical forest diversity
- Contemporary diversity
- Characteristics of tropical rain forests
- Tropical rainforest formations
- Tropical dry forests
- Forests of Jamaica
- Reproductive ecology of tropical rain forest trees
- Reproductive ecology of tropical dry forest trees
- Principles of tropical forest hydrology
- Tropical forest nutrient cycles
- Trees and soil fertility
- Agroforestry systems

Mode of delivery:
24 hours of lectures, 6 hours of tutorial and 36 hours of laboratory sessions in which students will gain an understanding, through class sessions and field trips, data collection and analysis about the ecological information needed for the management and conservation of tropical forests, what research methods are used and how the results of this research can be applied. The field trips will include weekend camping to study types of forests

Evaluation:
One 3-hour theory examination (Paper I) 70%
Fieldwork report 30%

Prescribed text:

BT33B/BOTN 3018 MEDICINAL AND ECONOMIC BOTANY (Not offered in 2007/08 academic year)
(4 Credits) Semester 2 Level 3

Aim: The course is designed to develop students’ understanding about the economic and ethnobotanical aspects of plant resource utilization; medicinal properties of the various plant groups

Objectives: Upon successful completion of this course the students should be able to:
1. describe the non-agricultural uses of plants
2. identify and describe commonly occurring plants of medicinal value
3. assess the use of phytochemicals in medicinal and industrial applications
4. outline the ways in which plants may be sustainably exploited for crop diversification

Pre-requisite: BT21B/BOTN2011 and BT22A/BOTN 2012

Course Content:
- Plant families of medicinal and economic importance
- Ethnobotany:
- Medicinal Plants
- Phytochemicals
- Herbs and spices
- Nutraceuticals
- Plant Products: flavours and fragrances, gums, resins, oils, fibres
- Aromatherapy
- Under-utilized tropical plant food
- Timber and non-timber forest products
- Economic uses of algae, bryophytes and pteridophytes
- Conservation of medicinal and economically important plant genetic resources.

Mode of Delivery:
24 hours of lectures, 6 hours of tutorials and 36 hours of laboratory exercises and field work.

Evaluation: One 3-hour theory examination (paper I) 60%
Course work 40%
Consisting of Practical Course test (2 hour) 20%
Laboratory reports 20%

Prescribed text:

BT34A/BOTN3015 PRINCIPLES OF PLANT BREEDING
(Not offered in 2007/08 academic year)
(4 Credits) Semester 2 Level 3

Aims: 1. To provide an understanding of genetic manipulation of sexually and asexually propagated crops with an emphasis on sustainable agricultural production.
2. To prepare students for employment in plant breeding

Objectives: Upon successful completion of the course the students should be able to:
1. formulate breeding strategies that would lead to an increase in productivity and profitability in agriculture and horticulture.
2. use plant breeding to mitigate the impact of pests and diseases avoiding pesticide damage to the environment.
3. discuss the use of plant breeding in developing sustainable agricultural production systems that satisfy the increasing demand for food, fiber and plant based industrial products.

Pre-requisite: BL 20J/Biol2011

Course Content
The course is designed to convey basic methods used in genetic improvement of crop plants and includes:

- plant domestication
- mating systems in crop plants
- continuous versus discontinuous variation traits
- heritability of economically important traits, genetics of self and cross-pollinated crops
- breeding methods with self and cross-pollinated crops
- design of field experiments
- genetics of disease and insect pest resistance in crop plants
- induced mutations and chromosome manipulation in crop improvement
- genetic diversity in crops and gene banks
- seed production industry
- crop improvement through genetic engineering
- general breeding problems associated with regional crops.

Mode of delivery:
24 hours of lectures, 6 hours of tutorial and 36 hours of Laboratory exercises, inclusive of field exercises.

Evaluation:
1 Theory examination (paper I) 65%
1 Practical test (2 hours) 20%
Laboratory report 15%

Prescribed text:

BT37Q/Biol3016 PLANT HEALTH
(4 Credits) Semester 2 Level 3

Aims:
1. To expose students to the ways in which a changing environment can affect the activities of beneficial and pathogenic macro- and micro-organisms, plants, and the interactions amongst them.
2. To demonstrate how the manipulation of the environment can promote plant health.

Objectives: On successful completion of this course, students will be able to:
1. Identify the factors that promote plant health or cause disease development, and explain how environmental change may affect these factors
2. Conduct field, greenhouse and laboratory tests to evaluate the influence of changing environmental factors on plant health
Pre-requisites: BL10J/BIOL1013, BL10L/BIOL1063, BL10M/BIOL1015 and BL23D/MICR2252

Course Content:
- Abiotic factors (e.g. nutrients, frost, sunscorch, herbicides, machinery) and biotic factors (e.g. fungi, bacteria, protists, nematodes, insects) contributing to plant health or disease development for plants in undisturbed land and various horticultural and agricultural systems
- The significance of the interactions between the environment, macro- and micro-organisms, and plants on plant health
- The effects of climate change, radiation, salinity, atmospheric, water and soil pollution, the introduction of genetically-modified organisms, and other environmental changes on plant health
- The environmental challenge to the management of plant diseases and remediation of disorders.
- Practical work conducted in the laboratory, greenhouse and field to demonstrate how changes in the atmosphere, water and soil can promote plant health or disease development

Evaluation:
- Theory examination (3 hours) 60%
- Course work 40%
 - In-course test (1 hour) 15%
 - Laboratory work 10%
 - Group project 15%

Mode of Delivery:
- Lectures 24 hours
- Field, greenhouse and laboratory studies 36 hours
- Tutorials 4 hours minimum

Prescribed texts:
None. A list of useful references is supplied and includes the following:

Highly recommended:
BT38B/BOTN3016 PLANT BIOTECHNOLOGY
(4 Credits) Semester 1 Level 3

Aim: To introduce students to the basic principles and applications of plant
tissue culture and genetic engineering.

Objectives: Upon successful completion of the course the students should be able to:

1. describe the underlying principles of aseptic culture of plant cells, tissues
 and organs
2. outline the use of specialized plant cell culture techniques in plant
 science research and industry
3. explain the principles of plant genetic engineering; describe the
 development and applications of transgenic plants
4. discuss the role of patents and ethical issues associated with plant genetic
 engineering

Pre-requisite: BT 22A/BOTN2012 OR BC 21C/BIOL2312

Course Content:

- Overview of plant tissue culture
- Principles of aseptic culture, basic media components
- Organ culture, callus culture, cell suspension culture, organogenesis,
somatic embryogenesis, micropropagation, anther culture, protoplast
isolation, culture and regeneration
- Applications of plant tissue culture
- Overview of gene structure, regulation, and expression
- Methods of plant transformation
- Development and analysis of genetically modified plants
- Ethical, safety, social, legal and environmental issues associated with the
 technology

Mode of delivery:

24 hours of lectures, 6 hours of tutorials, and 36 hours of laboratory exercises
including the aseptic culture of plant tissues, plant transformation and
molecular analysis of regenerants.

Evaluation: Written theory exam (3 hours) 60%
Coursework 40%
Two 1-hour In-course tests 20%
Laboratory reports 20%

Prescribed texts:
University Press. ISBN: 0-521-47892-8
BT38K/BOTN3017 PRINCIPLES OF HORTICULTURE
(4 credits) Semester 2 Level 3

Aim: To provide training in principles and practices of horticulture, especially as they relate to the Caribbean and the tropics.

Objectives: Upon successful completion of the course the students should be able to:

1. propagate vegetable, ornamental and fruit tree crops.
2. organize the cultivation of horticultural crops in nurseries, greenhouses and the field.
3. explain the factors involved in the harvesting and handling of horticultural crops.

Pre-requisites: BT 21B/BIOL2011 AND BT22A/BIOL2012

Course Content:
- Horticultural Plants (as distinct from routine agricultural plants): morphology, taxonomy, environmental physiology
- Propagation of Horticultural Plants
 - Sexual propagation
 - Seed production and certification, methods of seeding, seed nursery, transplantation
 - Asexual propagation: cuttings, grafting, budding, layering, specialised underground structures, micropropagation
- Nursery Management
- Controlled Environment Horticulture
 - Greenhouse design and construction
 - Internal environment control
 - Light, irrigation, temperature, humidity, substrate, pot and bed culture
- Out-door Environment Horticulture: principles of landscaping, nursery production, bedding plants, ground cover/grasses, trees and shrubs
- Growing Garden Crops: ornamentals, vegetables, herbs, fruit trees
- Post-Harvest Handling and Marketing of Horticultural Produce
- Computers in Horticulture

Mode of delivery:

24 hours of lectures, 6 hours of tutorials, and 36 hours of laboratory and field exercises. Practical work includes plant propagation techniques, field trips to, and work at, various horticultural entities..

Evaluation: One 3-hour Theory examination (paper I) 60%
Coursework 40%
Consisting of:
 Laboratory/Field report 20%
 In-course test 20%

Pearson/Prentice Hall. ISBN: 013114412X
Z 30A/ZOOL3011 SENSORY AND NEUROMUSCULAR PHYSIOLOGY
(Not offered in 2006/07 academic year)
(4 credits) Semester 1 Level 3

Aim: 1. To expose students to the variety of mechanisms involved in animal sensory and neuromuscular physiology.
2. To expose students to a range of techniques used in the study of animal sensory and neuromuscular physiology.

Objectives: Upon successful completion of this course students should be able to:
1. explain the mechanism of transport across cell membranes, membrane potential;
2. explain membrane potential and the equations used to describe it;
3. explain and demonstrate action potentials and their propagation;
4. explain chemical and electrical synapses;
5. describe and explain sensory coding, pain, and animal learning and memory;
 and
6. explain motor control of muscular contraction, the sliding filament theory, excitation contraction coupling, and the characteristics of isometric and isotonic contractions.

Pre-requisites: Z20G/ZOOL2012 and Z20H/ZOOL2013, C06J/CHEM0901 and C06K/CHEM0902 or ‘A’ level Chemistry or equivalent.

Course Content:
- Structure of the neurone
- Input systems
- Ionic basis of neuronal activity
- Synaptic transmission
- Effector systems
- Aggregates of neurones
- Co-ordination
- Plasticity of the central nervous system

Mode of delivery: 24 hours of lectures, 6 hours of tutorial and 36 hours of practical work involving laboratory exercises in experimental physiology

Evaluation:
One 3-hour theory paper 60%
Course Work: 40%
 Comprising one 2-hour practical coursework test 20%
 Laboratory Reports 20%

Prescribed Text:
Z 30B/ZOOL3012 METABOLIC PHYSIOLOGY
(Not offered in 2006/07 academic year)
(4 Credits) Semester 1 Level 3

Aims 1. To expose students to the variety of mechanisms involved in animal metabolic physiology.
 2. To expose students to a range of techniques used in the study of the mechanisms involved in animal metabolic physiology.

Objectives: Upon successful completion of this course students should be able to:

1. make a comparative analysis of the use of air and water as respiratory media
2. explain respiratory regulation, oxygen and carbon dioxide transport in animals
3. describe regulation of cardiac output and vasomotor tone in vertebrates
4. describe thermoregulatory, osmoregulatory and ionoregulatory mechanisms
5. explain urine formation and its regulation
6. describe mechanisms of hormone action
7. explain the process of ageing in animals
8. design and execute physiological research on animal metabolism

Pre-requisites: Z20G/ZOOL2012 and Z20H/ZOOL2013, C06J/ CHEM0901 AND C06K/ CHEM0902 or ‘A’ level Chemistry or equivalent.

Course content:
- Energy metabolism of the whole animal
- Respiration
- Circulation
- Water and solute metabolism
- Nitrogen metabolism
- Body temperature and energy metabolism
- Control of metabolism

Mode of delivery:
 24 hours of lectures, 6 hours of tutorial and 36 hours of practical work involving laboratory exercises in experimental physiology

Evaluation:
One 3-hour theory paper 60%
Course Work: 40%
 Comprising one 2-hour practical coursework test 20%
 Laboratory Reports 20%

Prescribed Text:
Z 30G/ZOOL3015 GENERAL PARASITOLOGY
(4 Credits) Semester 1 Level 3

Aims The course seeks to increase awareness of the impact of the major parasitites on the health of man and domesticated animals, and economic significance of the major parasitites.

Objectives Upon successful completion of this course students will be able to:
1. identify the major types of protist, helminth and arthropod parasites of man and domestic animals;
2. describe the life cycles of these parasites and pathology of infections;
3. determine the current health and economic costs of these parasites;
4. propose basic control strategies for infections.

Pre-requisites: Z20G/ZOOL2012 and Z20H/ZOOL2013

Course Content
- Introduction to parasitism: inter-specific associations; endo- and ecto-parasitism; hosts and host specificity
- Distribution, prevalence, life cycle, transmission, nutrition, immunology, pathology and control of the main protist, helminth and arthropod parasites of man and domestic animals.
- The cost of parasitism.

Mode of delivery:
24 hours of lectures, 10 hours of tutorials and 32 hours of laboratory exercises which include the identification and functional morphology of the major protist, helminth and arthropod parasites of man and domestic animals from living and preserved materials; stained whole mount preparations of helminth parasites; epidemiological exercises.

Evaluation: One 3-hour theory examination 50%
Course Work: 50%
Consisting of one 2-hour comprehensive test (Mix of practical and theory) 25%
Laboratory reports 25%

Prescribed Text:
Z 30M/ZOOL3017 IMMUNOLOGY
(4 Credits) Semester 2 Level 3

Aims: This course is designed to present the principles of immunology and to highlight the major functional operations and applications of immune responses.

Objectives: Upon successful completion of this course students should be able to:
1. describe the basic concepts in immunology
2. explain the role of immunology in real life situations e.g. transplantation, allergy, autoimmunity, HIV infection, vaccination, et al.

Pre-requisites: Z20G/ZOOL2012 and Z20H/ZOOL2013

Course Content
- **Basic Immunology**
 Evolution of immune responses; Components of innate and acquired immunity; Immunogens and antigens; Antibody structure and function; Antibody-antigen interactions; The complement system; Ontogeny of immune cells; Triggering the immune response; The major histocompatibility complex in immune responses; Control mechanisms in the immune response

- **Immunity in action**
 Immunoassays; Hypersensitivity reactions; Disorders of the immune response; HIV Infection; Autoimmunity; Transplantation immunology; Tumor immunology

Mode of delivery:
24 hours of lectures, 10 hours of tutorials and 32 hours of laboratory exercises which include histology of lymphoid organs of the mouse, viable counts of splenic lymphocytes, precipitation & agglutination reactions, diagnostic immunology - IFA, ELISA and use of a Computer-assisted learning package (Ammit program)

Evaluation:
One 3-hours theory paper 50%
Course Work: 50%
Consisting of one 2-hour MCQ paper 25%
Laboratory reports (5 x 5% ea) 25%

Prescribed text:
Aims: This course is designed to familiarize the student with the basic principles of fisheries science and how these may be applied to the sustainable harvesting of fishable resources in actual situations. Examples are selected to demonstrate a variety of real-life situations around the world.

Objectives: Upon successful completion of this course students should be able to:
1. describe the main types of fishable resources
2. explain the principles of fish populations dynamics and stock assessment
3. apply the principles of fish population dynamics and stock assessment to the integrated management of fishable resources.

Prerequisite: Z20G/ZOOL2012 and Z20H/ZOOL2013
Co-requisite: BL31E/BIOL3014

Course Content:

- **Fish population dynamics and stock assessment**
 Stock, gear selection, growth recruitment, stock assessment, yield and yield models, mortality.

- **Caribbean Fisheries**
 Distribution of regional fisheries resources regional fishing methods: Jamaican fishing industry.

- **World Fisheries**
 An examination of important features of world fisheries resources, fishing methods of the world, selected case studies.

- **Fisheries Management**
 Principles of fisheries management, fisheries legislation, recent developments in fisheries, fishing industry practices.

Mode of Delivery:
24 hours of lecture, 6 hours of tutorial and 36 hours of practicals involving field and laboratory exercises

Evaluation:
One 3–hour theory examination 60%
Course Work: 40%
 Comprising one 2-hour practical course test 20%
 Laboratory reports 20%

Prescribed Text:
Z 31C/ZOOL3018 FISH BIOLOGY (Not offered in 2006/07)
(4 Credits) Semester 1 Level 3

Aims: 1. To provide an introduction to the diversity and taxonomy of living fishes.
2. To give an introduction to various aspects of the biology and economy of fishes and fish communities.
3. To provide students with the necessary practical skills to undertake basic research in fish biology.

Objectives: Upon successful completion of the course students should be able to:
1. recognize and identify the common fish families found in Jamaica.
2. identify the basic elements of taxonomy, anatomy, physiology and ecology of fishes.
3. identify and assess feeding habits, fecundity and to ageing of fishes using practical skills.

Prerequisite: Z 20G/ZOOL2012 and Z 20H/ZOOL2013

Course Content:
- Classification and characteristics of main groups of Chondrichthyes and Osteichthyes.
- Body structure and its modifications.
- Digestive structure and physiology. Nutrition. Feeding ecology. Optimal foraging theory.
- Circulatory system. Gills and gaseous exchange system.
- Muscles and swimming. Osmoregulation. aspects of the endocrine system.
- Aspects of behaviour.
- Ecology and structure of fish communities associated with the marine pelagic, estuarine and coral reef habitats.
- Threats to fish communities.

Mode of Delivery:
24 hours of lectures, 6 hours of tutorials and 36 hours of practicals consisting of mainly laboratory based classes demonstrating a variety of basic techniques used in fish biology.
Field excursion(s) for collection of fishes.

Evaluation: One 3-hour theory examination 60%
Course Work: 40%
Consisting of one 2-hour practical test 20%
Practical reports 20%

Prescribed Text:
Aims: 1. To expose students to the basic principles related to natural production in Enclosed aquatic systems
2. To familiarize them with the main issues surrounding production and maintenance of these aquatic resources.

Objectives: Upon successful completion of this course students will be able to:
1. describe the basic principles related to sustainable harvesting of fishable resources
2. outline and evaluate the issues surrounding their assessment and management
3. outline the principles underlining the culture of aquatic animals and selected plants
4. evaluate the advantages as well as disadvantages surrounding aquaculture and mariculture practices.

Pre-requisite: Z 20G/ZOOL2012 and Z 20H/ZOOL2013
Co-requisite: Z 31C/ZOOL3018

Course Content:
- **Part A.** Fisheries dynamics, assessment and management.
 Age and growth. Fishable stock, populations and recruitment. Gear Selectivity and fishing effort. Yield models and their value. Introduction to principles of fisheries management.
- **World and Caribbean Fisheries**
- **Part B.** Principles of Fin-fish Aquaculture
- **Non-Finfish Culture Principle**
 Penaeid shrimp and freshwater prawn culture. Oyster and seaweed culture.

Mode of Delivery:
24 hours of lectures, 6 hours of tutorials and 36 hours of practicals consisting of mainly laboratory based classes involving mainly field and some laboratory-based classes demonstrating major aspects of theory.

Evaluation: One 3-hour theory examination 60%
Course Work:
Consisting of one 2-hour practical test 20%
Practical reports 20%

Prescribed Text:
Aims: 1. To equip students with a general knowledge of the biology and taxonomy of insects.
2. To develop an understanding of the general principles of systematics with special emphasis on the rules governing insect taxonomy.

Objectives: Upon successful completion of this course students should be able to:

1. Identify and classify insects to the level of family.
2. Describe the biology of the different insect orders.
3. Explain the principles and techniques of insect systematics.

Pre-requisite: BL10L/BIOL1063

Course Content:
- External and internal morphology in relation to taxonomy and evolution.
- The biology, life histories and, where applicable, social organization of the insect orders with special reference to economically important groups.
- The diversity of insects, with emphasis on Caribbean fauna and economically important groups.
- Principles of systematics, including important regulations. Theories of phylogenetics. Techniques in contemporary insect taxonomy.

Mode of Delivery:
24 hours of lectures, 6 hours of tutorials and 36 hours of practicals including hands-on laboratory sessions and field trips which emphasize the collection of insects and the study of insect in situ. Students are expected to produce a collection of 100 insect species.

Evaluation:
- One 3-hour theory paper 65%
- Course Work 35%
 - Consisting of Insect collection 20%
 - Laboratory reports (5 X 3%) 10%
 - Oral presentation 5%

Prescribed text:
Aim: To equip students with a general knowledge of arthropod and other pests of economic importance in the region and the appropriate management strategies of these pests.

Objectives: At the end of the course students will display knowledge of:

1. the biology and behaviour of selected agriculture and urban pests of economic importance to the Caribbean;
2. assessing the economic importance of these pests;
3. past and present control strategies of these pests;
4. techniques of formulating suitable pest management strategies.

Pre-requisite: BL 20N/BIOL2014

Course Content:
- Definition and evolution of arthropod and other pests
- Historical perspective of pest problems and the attempts by man to deal with them
- Pest identification techniques and the nature of damage associated with insect pests of tropical importance
- The biology, behaviour and economic importance of pests in tropical ecosystems like Jamaica
- Assessing pest populations and related loss
- Determination of Economic Injury Levels (EIL), and Action or Economic Thresholds (AT or ET)
- The pest control options available (legislative, physical, cultural, biological and chemical control).
- The principles of Integrated Pest Management (IPM)
- IPM of selected tropical pests

Mode of Delivery:
24 hours of lectures 4 hours of interactive tutorial sessions, 36 hours of practicals involving the collection of 20 economically important insect species, field and laboratory exercises on, pest identification and diagnostics, loss and damage assessment, determination of EIL and ET, assessment of the efficiency of different control strategies and the development of IPM programmes for selected pests.

Evaluation: One 3-hour theory paper 65%
Course Work: 35%
Consisting of laboratory reports 20%
Insect Collection 10%
Oral Presentation 5%

Prescribed Text:

Recommended Text: