2022-2023 Junior Mathematical Olympiad

SOLUTIONS Final Round Examination (Grade 4)

1. Soln: (A) Since $2 \times 0=0$, the value of $2 \times 0 \times 2 \times 3$ is 0 .
2. Soln: (C) Since 60 minutes are in an hour, the number of beats in an hour is $70 \times 60=$ 4, 200 times per hour.
3. Soln: (D) The number of children is the number of girls plus the number of boys. There are 3 girls and 2 boys in this family. The total is 5 .
4. Soln: (E) Of the numbers given, the sum of the hundreds and units digits are 3, 8, 8, 9 and 3 . After tripling them, they are respectively $9,24,24,27,9$. From this list 9 is the only square and corresponds to the number 231.
5. Soln: (D) Because Kassie and Zoe were born in the same month, they were both born in March. Because Julie and Zoe were born on the same day of a month, they were both born on the 20th. This means that Helen (the only girl left) was born May 17th.
6. Soln: (D) $2^{2} \times 2^{2020} \times 2=2^{2} \times 2^{2020} \times 2^{1}=2^{2+2020+1}=2^{2023}$
7. Soln: (A) The sum of the 4 sides of the square is $4 \times 10=40 \mathrm{~cm}$. The sum of the 4 sides of the rectangle is $3+3+10+10=26 \mathrm{~cm}$. The difference in length is $40 \mathrm{~cm}-26$ $\mathrm{cm}=14 \mathrm{~cm}$
8. Soln: (E) After putting a melon on the scale with the oranges, the weights of one melon cancel, leaving one melon weighing 6 oranges.
9. Soln: (A) $\frac{66}{77}=\frac{6(11)}{7(11)}=\frac{6}{7}$. Similarly the other fractions are $\frac{5}{6}, \frac{4}{5}$ and $\frac{3}{4}$. The greatest is $\frac{7}{8}$.
10. Soln: (E) Since Diana is 3 years old and her mother is 28 years older than her, the mother is presently $3+28=31$ years. In x years, Diana will be $3+x$ years old and her mother will be $31+x$ years old. If we solve

$$
3(3+x)=31+x
$$

we get $9+3 x=31+x$ or $2 x=22$ or $x=11$.
11. Soln: (E) The number of choices he have is found from the multiplication rule for counting: $2 \times 3 \times 4=24$
12. Soln: (D) Since the remaining parts from using four plates can be used to make one more plate, exactly 3 plates are used to make 4 medals. That is, one medal is made from $3 / 4$ plate of gold. Now $16=3 \times 5+1$. Fifteen plates will make exactly $5 \times 4=20$ medals and the extra plate (the 16th) will make 1 medal. The total is $20+1=21$.
13. Soln: (E) Let x be the number of persons that gained MORE than Tony. The number receiving less than Tony is therefore $2 x$. The total is therefore $2 x+1+x=28$. This gives $x=9$. This means that $x=9$ persons got more than Tony and so Tony finished 10th.
14. Soln: (D) The next number greater than 187569 consisting of different digits is 187590 . The difference is $187590-187569=21$.
15. Soln: (C) The shaded area is the area of a large rectangle of size $(5+6) \times(5+3)=88$ MINUS the area of a smaller rectangle of size $5 \times 6=30$. The difference is $88-30=58$.
16. Soln: (A) Let today be the day after Jake's birthday. Since the day after tomorrow will be Thursday, tomorrow will be Wednesday which means today is Tuesday and Jake's birthday was on a Monday.
17. Soln: (D) From the information given 4 pecks $=1$ bucket and 9 buckets $=1$ barrel. Since $4 \times 9=36$ pecks $=9$ buckets, 36 pecks $=1$ barrel. Peter already picked one peck an so he must pick an additional 35 pecks of peppers.
18. Soln: (C) In grams, the mass of the largest coin is $100 \times 1000=100000$. Since a Jamaican $\$ 1$ coin has a mass of 10 g . The number of such coins that can be made is $\frac{100000}{10}=10000$ which has a value of $\$ 10000$.
19. Soln: (B) The greatest three-digit number with all different digits is 987 and the smallest three-digit number with all different digits is 102 . The difference is $987-102=885$.
20. Soln: (C) If the length of the sides of the squares I, II, III and IV are $\ell_{1}, \ell_{2}, \ell_{3}$ and ℓ_{4} respectively, then $\ell_{1}=\frac{16}{4}=4 \mathrm{~m},, \ell_{2}=\frac{24}{4}=6 \mathrm{~m}$. Also $\ell_{3}=\ell_{1}+\ell_{2}=10 \mathrm{~m}$ and $\ell_{4}=\ell_{2}+\ell_{3}=6+10=16 \mathrm{~m}$. The perimeter is $4 \times 16=64 \mathrm{~m}$.
21. Soln: (A) Only when 5 balls are in the bag can we guarantee that she took at least one ball of each color. This would require her to draw at least $14+8+6-5=23$ balls.
22. Soln: (C) The sum of the areas of the three unwanted triangles is

$$
\frac{1}{2}(4)(5)+\frac{1}{2}(6)(2)+\frac{1}{2}(2)(1)=17
$$

The area of the required triangle is $24-17=7$.
23. Soln: (E) Let c and d be the locations of C and D. because $A B=2 B C$ and $B C=2 C D$,

$$
20-16=2(c-20) \text { and } c-20=2(d-c)
$$

The first equation gives $c-20=2$ and $c=22$. The second equation gives $d-c=1$ which means $d=23$.
24. Soln: (C) If the rays are numbered from 1 (left-most) to 5 (right-most), then the angles are formed form rays

$$
(1,2),(1,3),(1,4),(1,5)(2,3),(2,4),(2,5),(3,4),(3,5) \text { and }(4,5)
$$

The total is 10 . Of this 10 , two pairs are equal $(1,3)$ with $(3,4)$ and $(2,4)$ with $(4,5)$. The number with different angle measures is 8 .
25. Soln: (D) Let A be the set of all the multiples of 3 and B the set of numbers ending in 3.
$A=\{3,6, \ldots, 99\}$ and the number in A is 33 . Also, $B=\{3,13,23, \ldots, 93\}$ and the number in B is 10 . The numbers common to A and B are $3,33,63$ and 93 (4 in total). The number of claps is $33+10-4=39$.

