2022-2023 Junior Mathematical Olympiad

SOLUTIONS: Final Round Examination (Grades 5 and 6)

1. Soln: (D) $2^{2} \times 2^{2020} \times 2=2^{2} \times 2^{2020} \times 2^{1}=2^{2+2020+1}=2^{2023}$
2. Soln: (C) Since 60 minutes are in an hour, the number of beats in an hour is $70 \times 60=$ 4, 200 times per hour.
3. Soln: (E) If the sum of the digits is a multiple of 3 then the number is a multiple of 3 . The sum of the digits are respectively $6,9,12,15,18$. All are multiples of 3 . The answer is 5 .
4. Soln: (A) $\frac{66}{77}=\frac{6(11)}{7(11)}=\frac{6}{7}$. Similarly the other fractions are $\frac{5}{6}, \frac{4}{5}$ and $\frac{3}{4}$. The greatest is $\frac{7}{8}$.
5. Soln: (A) The sum of the 4 sides of the square is $4 \times 10=40 \mathrm{~cm}$. The sum of the 4 sides of the rectangle is $3+3+10+10=26 \mathrm{~cm}$. The difference in length is $40 \mathrm{~cm}-26$ $\mathrm{cm}=14 \mathrm{~cm}$
6. Soln: (D) Because Kassie and Zoe were born in the same month, they were both born in March. Because Julie and Zoe were born on the same day of a month, they were both born on the 20th. This means that Helen (the only girl left) was born May 17th
7. Soln: (B) $2 / 3$ of the chocolate bar was used to feed each of her x children. Therefore $\frac{1}{12} \cdot x=\frac{2}{3}$ and $x=\frac{2}{3} \times 12=8$.
8. Soln: (E) The six marked angles are the interior angles of 2 triangles. The interior angles of 1 triangle add up to 180°. So the marked angles add up to $2 \times 180^{\circ}=360^{\circ}$.
9. Soln: (D) From the information given 4 pecks $=1$ bucket and 9 buckets $=1$ barrel. Since $4 \times 9=36$ pecks $=9$ buckets, 36 pecks $=1$ barrel. Peter already picked one peck an so he must pick an additional 35 pecks of peppers.
10. Soln: (E) Let the rectangle be a square (it does not matter) of sides $1 \mathrm{~m}=100 \mathrm{~cm}$. The triangle cut off will have an area of $\frac{1}{2}(50)(50)=1,250 \mathrm{~cm}^{2}$ (one-eighth of the rectangle)
11. Soln: (E) Since Diana is 3 years old and her mother is 28 years older than her. Mother is presently $3+28=31$ years. In x years, Diana will be $3+x$ years old and her mother will be $31+x$ years old. If we solve $3(3+x)=31+x$, we get $9+3 x=31+x$ or $2 x=22$ or $x=11$.
12. Soln: (A) Let the length of one side of the square be 3 units so that the perimeter is $4 \times 3=12$. The perimeter of the octagon is $4+3+4+1+3+1+3+1=20$ The ratio is $12: 20$ or $3: 5$.
13. Soln: (D) Since the remaining parts from using four plates can be used to make one more plate, exactly 3 plates are used to make 4 medals. That is, one medal is made from $3 / 4$ plate of gold. Now $16=3 \times 5+1$. Fifteen plates will make exactly $5 \times 4=20$ medals and the extra plate (the 16th) will make 1 medal. The total is $20+1=21$.
14. Soln: (D) Working in minutes, the match lasted $11 \times 60+5=665$ and the 5th set lasted $8 \times 60+11=491$. The fraction is

$$
\frac{491}{665} \approx \frac{490}{665}=\frac{98}{133}=\frac{7 \times 7 \times 2}{7 \times 19}=\frac{14}{19} \approx \frac{15}{20}=\frac{3}{4} .
$$

15. Soln: (B) $\frac{83}{4}=20.75$ and so the winner must get 21 or more votes. If person 1 receives 21 votes, 62 votes must be shared between 3 persons and since $20+20+20=60$, at least one other person would get 21 or more votes and so the winner must get more than 21 votes. If person 1 gets 22 votes, the other three persons could get 20, 20, 21 (for example) and person 1 wins.
16. Soln: (B) If the three digit number is divisible by 25 it must end in $00,25,50$ or 75 .

Case 1: Ending in 00 : The first digit can be 3,5 or 7 (3 in total)
Case 2: Ending in 25 : Not possible (0 in total)
Case 3: Ending in 50 : The first digit can be 3,5 or 7 (3 in total)
Case 4: Ending in 75 : The first digit can be 3,5 or 7 (3 in total)
The number of possibilities is $3+3+3=9$.
17. Soln: (C) The area of pentagon $A B C E D$ is

$$
\text { Area } \triangle A B D+\text { Area } \triangle A B C-\text { Area } \triangle A B E=15+12-4=23
$$

18. Soln: (A) Only when 5 balls are in the bag can we guarantee that she took at least one ball of each color. This would require her to draw at least $14+8+6-5=23$ balls.
19. Soln: (A) Let D be the distance one way. The time in hours taken to go up and down the hill are respectively $\frac{D}{12}$ and $\frac{D}{20}$. So $\frac{D}{12}=\frac{D}{20}+\frac{16}{60}$. Multiplying both sides by 60 , we get $5 D=3 D+16$. This gives $D=8 \mathrm{~km}$. The time in minutes the cyclist takes to go down the hill is $\frac{D}{20} \times 60=\frac{8}{20} \times 60=24$. minutes.
20. Soln: (C) The length of time between sunrise and sunset is $9: 25 \mathrm{P} . \mathrm{M}-4: 53 \mathrm{~A} . \mathrm{M}$. This is $7: 07+9: 25=16: 32$. One half of this is $8: 16$. Local noon is therefore $4: 53$ A.M. $+8: 16=1: 09$ P.M
21. Soln: (D) Because three Sundays are on even days in this month, there are 5 Sundays in this month and the order is

$$
E, O, E, O, E
$$

where E represents even and O represents odd. If the first Sunday is on the 2 nd then the last Sunday is on the 30th. If the first Sunday is on the 4 nd then the last Sunday is on the 32 nd. Since no month has 32 days, the first Sunday must be on the 2 nd. The 6 th of the month will therefore be a Thursday and so is the 20th.
22. Soln: (A) After day 1, the fraction destroyed is $\frac{1}{2}$. After day 2, the fraction destroyed is $\frac{1}{2}+\frac{1}{3} \cdot \frac{1}{2}=\frac{2}{3}$ The fraction remaining is $\frac{1}{3}$. After day 3 , the fraction destroyed is $\frac{2}{3}+\frac{1}{4} \cdot \frac{1}{3}=$ $\frac{3}{4}$ and the fraction remaining is $\frac{1}{4}$. After day 4 , the fraction destroyed is $\frac{3}{4}+\frac{1}{5} \cdot \frac{1}{4}=\frac{4}{5}$ and the fraction remaining is $\frac{1}{5}$.
23. Soln: (B) Let the three digit number be $a b c$. The sum of the digits is the number $a+b+c$ and

$$
1 \leq a+b+c \leq 27
$$

Note that $a+b+c=1$ for the number 100 and is equal to 27 for the number 999 .
For numbers in the range 1 to 27 , the greatest value of the sum of the digits is 10 (corresponding to when $a+b+c=19$)
24. Soln: (C) Step 1 has 8 groups of 4 players. In each group with players (a, b, c, d). The pairs are

$$
(a, b),(a, c),(a, d),(b, c),(b, d) \text { and }(c, d)
$$

The number of games in each group is 6 . Step 1 has $6 \times 8=48$ games. Step 2 has $6 \times 4=24$ games. Step 3 has $6 \times 2=12$ games. Step 4 has $6 \times 1=6$. Step 5 has 1 game (the final). The total number of games played is $48+24+12+6+1=91$.
25. Soln: (A) Let t, s and c be the weights of the triangular, square and circular object. We have $P<Q<R$ and so

$$
2 t+s<2 c+s<t+2 s
$$

From this, $t<c$ and $t<s$. The weight of S is

$$
t+c+s<c+c+s=2 c+s
$$

So $S<Q$. Also, the weight of S is

$$
t+c+s>t+t+s=2 t+s
$$

So $S>P$. Therefore $P<S<Q$.

