2022-2023 Senior Mathematical Olympiad

Final Round Examination (Grades 7 and 8)

Provide complete solutions to all 7 questions (2 hours)

1. Find all pairs of positive integers (x, y) where the ratios $x: 4$ and $9: y$ are equal?
2. A sum of money is being divided among Altiman, Britannie and Cecil. First, Altiman receives $\$ 100$ plus one-third of what is left. Britannie then receives $\$ 600$ plus one-third of what remains. Finally Cecil receives $\$ 4000$ which is the remaining amount. What is the total amount of money that is being shared?
3. The diagram shows a rectangle $A B C D$ with $A D=10 \mathrm{~cm}$ and the area of the shaded area is $100 \mathrm{~cm}^{2}$.

What is the shortest distance between the two semicircles?
4. What is the value or values of the digit k that makes the five-digit number

$$
275 k 2
$$

divisible by 12 ?
5. An altitude (whose length is called height) of a triangle is the perpendicular drawn from one vertex of the triangle to the opposite side.

The sides of a triangle have lengths $30 \mathrm{~cm}, 40 \mathrm{~cm}$ and 50 cm . Calculate the length of the shortest altitude?
It may help to know that $30^{2}+40^{2}=50^{2}$.

The paper continues on the flip side of this page.....
6. Consider the numbers

$$
\begin{aligned}
w & =2^{129} \times 3^{81} \times 5^{131} \\
x & =2^{127} \times 3^{81} \times 5^{131} \\
y & =2^{126} \times 3^{82} \times 5^{131} \\
\text { and } z & =2^{125} \times 3^{82} \times 5^{132}
\end{aligned}
$$

Show the necessary work to demonstrate that x is smallest and w is largest.
7. Freddie has a number of square tiles, each measuring 1 cm by 1 cm . He tries to put these small square tiles together to form a larger square of side length $n \mathrm{~cm}$, but finds that he has 92 tiles left over. If he had increased the side length of the larger square to $(n+2)$ cm , he would have been 100 tiles short of completing the larger square. How many tiles does Freddie have?

