2022-2023 Senior Mathematical Olympiad

Final Round Examination (Grades 7 and 8) - Solutions

1. Soln: If the ratios $x: 4$ and $9: y$ are equal, then

$$
\frac{x}{4}=\frac{9}{y}
$$

which gives $x y=36$. The pairs are

$$
(1,36),(2,18),(3,12),(4,9),(6,6),(9,4),(12,3),(18,2),(36,1)
$$

2. Soln: Let the amount being shared be $\$ x$. The three dollar shares are

$$
\begin{aligned}
\text { Altiman } & : 100+\frac{1}{3}(x-100)=\frac{1}{3}(x+200) \\
\text { Britannie } & : 600+\frac{1}{3}\left(x-\frac{1}{3}(x+200)-600\right)=\frac{2}{9} x+\frac{3400}{9} \\
\text { Cecil } & : 4000
\end{aligned}
$$

Since Cecil's amount is the remainder, it represents $x-\left(\frac{1}{3}(x+200)+\frac{2}{9} x+\frac{3400}{9}\right)=$ $\frac{4}{9} x-\frac{4000}{9}$. So

$$
\frac{4}{9} x-\frac{4000}{9}=4000
$$

$4 x-4000=36000$. From this, $4 x=40000$ giving $x=\frac{40000}{4}=10000$.
Alternative Solution: After Britannie receives $\$ 600$, Cecil's amount represent $\frac{2}{3}$ of what is left which is $\$ 4000$. So Britannie's amount is $\$ 600+\$ 2000=\$ 2600$. Solving

$$
\frac{2}{9} x+\frac{3400}{9}=2600
$$

gives $x=10000$.
3. Soln: The area of the complete circle is $A=\pi r^{2}=25 \pi$. The area of the rectangle is therefore $100+25 \pi$ and the length of side $A B$ is $\frac{100+25 \pi}{10}=10+2.5 \pi$. The closest distance between the two circles is then $10+2.5 \pi-10=2.5 \pi$.
4. Soln: If the number is divisible by 12 it must be divisible by both 3 and 4 . It is divisible by 4 if the two digit number $k 2$ is divisible by 4 . The choices of k are $1,3,5,7,9$. If the number is divisible by 3 the sum of the digits must be divisible by 3 . The sum of the digits is $16+k$. The choices of k are $2,5,8$. For the number to be divisible by 12 , the only possible value of k is 5 corresponding to 27552 .
5. Soln: Because $30^{2}+40^{2}=50^{2}$, the triangle is right angled with hypotenuse of length 50 cm . The area of the triangle is therefore $\frac{1}{2}(30)(40)=600 \mathrm{~cm}^{2}$. If h is the shortest altitude, then

$$
\text { Area }=\frac{1}{2}(\text { base })(\text { height })=\frac{1}{2}(50) h=25 h
$$

So $600=25 h$ and $h=\frac{600}{25}=24 \mathrm{~cm}$.
6. Soln: Let $t=2^{125} \times 3^{81} \times 5^{131}$

$$
\begin{aligned}
w & =2^{4}\left(2^{125} \times 3^{81} \times 5^{131}\right)=16 t, \\
x & =2^{2}\left(2^{125} \times 3^{81} \times 5^{131}\right)=4 t \\
y & =2^{1} \cdot 3^{1}\left(2^{125} \times 3^{81} \times 5^{131}\right)=6 t \\
\text { and } z & =3^{1} \cdot 5^{1}\left(2^{125} \times 3^{81} \times 5^{131}\right)=15 t
\end{aligned}
$$

This shows that $x<y<z<w$.
7. Soln: The area of the bigger square is $n^{2} \mathrm{~cm}^{2}$ and so the number of tiles available is $T=n^{2}+92$. After the increase, the area of the bigger square is $(n+2)^{2}=n^{2}+4 n+4$ and $T=n^{2}+4 n+4-100=n^{2}+4 n-96$. So

$$
n^{2}+92=n^{2}+4 n-96
$$

This gives $4 n=188$ or $n=\frac{188}{4}=47$. The number of tiles available is $T=47^{2}+92=$ 2301.

