2022-2023 Senior Mathematical Olympiad

Final Round Examination (Grades 9, 10 and 11) - Solutions

1. Soln: Let the amount being shared be $\$ x$. The three dollar shares are

$$
\begin{aligned}
\text { Altiman } & : 100+\frac{1}{3}(x-100)=\frac{1}{3}(x+200) \\
\text { Britannie } & : 600+\frac{1}{3}\left(x-\frac{1}{3}(x+200)-600\right)=\frac{2}{9} x+\frac{3400}{9} \\
\text { Cecil } & : 4000
\end{aligned}
$$

Since Cecil's amount is the remainder, it represents $x-\left(\frac{1}{3}(x+200)+\frac{2}{9} x+\frac{3400}{9}\right)=$ $\frac{4}{9} x-\frac{4000}{9}$. So

$$
\frac{4}{9} x-\frac{4000}{9}=4000
$$

$4 x-4000=36000$. From this, $4 x=40000$ giving $x=\frac{40000}{4}=10000$.
Alternative Solution: After Britannie receives $\$ 600$, Cecil's amount represent $\frac{2}{3}$ of what is left which is $\$ 4000$. So Britannie's amount is $\$ 600+\$ 2000=\$ 2600$. Solving

$$
\frac{2}{9} x+\frac{3400}{9}=2600
$$

gives $x=10000$.
2. Soln: The area of the bigger square is $n^{2} \mathrm{~cm}^{2}$ and so the number of tiles available is $T=n^{2}+92$. After the increase, the area of the bigger square is $(n+2)^{2}=n^{2}+4 n+4$ and $T=n^{2}+4 n+4-100=n^{2}+4 n-96$. So

$$
n^{2}+92=n^{2}+4 n-96
$$

This gives $4 n=188$ or $n=\frac{188}{4}=47$. The number of tiles available is $T=47^{2}+92=$ 2301.
3. Soln: If the number is divisible by 12 it must be divisible by both 3 and 4 . It is divisible by 4 if the two digit number $k 2$ is divisible by 4 . The choices of k are $1,3,5,7,9$. If the number is divisible by 3 the sum of the digits must be divisible by 3 . The sum of the digits is $16+k$. The choices of k are $2,5,8$. For the number to be divisible by 12 , the only possible value of k is 5 corresponding to 27552 .
4. Soln:
(i) If we put $x=5$ we get $f(5)-f(4)=20-9=11$. So

$$
f(4)=f(5)-11=18-11=7
$$

Similarly, $f(4)-f(3)=16-9=7$. So

$$
f(3)=f(4)-7=7-7=0 .
$$

(ii) For $f(x)=2 x^{2}+p x+q, f(3)=0$ and $f(4)=7$ implies

$$
\begin{aligned}
& 18+3 p+q=0 \\
& 32+4 p+q=7
\end{aligned}
$$

Subtracting, $14+p=7$. This gives $p=-7$ (and $q=3)$.
5. Soln: It is easy to show that $\triangle R A P, \triangle P B Q$ and $\triangle Q C R$ are all congruent (side-angle-side) and so $P Q=Q R=R P$. Therefore $\triangle P Q R$ is equilateral. Using the cosine rule in $\triangle R A P$, we can find $P R$:

$$
\begin{aligned}
P R^{2} & =P A^{2}+A R^{2}-2(P A)(A R) \cos \left(60^{\circ}\right) \\
P R^{2} & =1^{2}+3^{2}-2(1)(3) \cos \left(60^{\circ}\right) \\
& =1^{2}+3^{2}-3=7
\end{aligned}
$$

So $P R=\sqrt{7}$ and the area of triangle $P Q R$ is

$$
\frac{1}{2}(P Q)(Q R) \sin 60^{\circ}=\frac{1}{2} \sqrt{7} \cdot \sqrt{7} \cdot \frac{\sqrt{3}}{2}=\frac{7 \sqrt{3}}{4} \mathrm{~cm}^{2}
$$

6. Soln: The layer sum of wxyz equals 2024 and so

$$
1000 w+100 x+10 y+z+100 x+10 y+z+10 y+z+z=1000 w+200 x+30 y+4 z
$$

So $1000 w+200 x+30 y+4 z=2024$
Now w cannot be 3 or greater and so, $w=1$ or $w=2$. If $w=2$ then $x=y=0$ and $4 z=24$ giving $z=6$. So one possible solution is 2006 .
If $w=1$ then $200 x+30 y+4 z=1024$. Clearly $z=1$ or $z=6$. These give

$$
200 x+30 y=1020 \text { or } 200 x+30 y=1000
$$

That is,

$$
20 x+3 y=102 \text { or } 20 x+3 y=100
$$

Clearly $x=4$ or $x=5$. When $x=4$, no solution exist and when $x=5$, the second equation gives $y=0$. The number is therefore 1506. Here

$$
1506+506+06+6=2024
$$

The two solutions are 2006 and 1506.
7. Soln: Let the numbers be $m-2, m-1, m \cdot m+1$ and $m+2$

$$
(m-2)^{2}+(m-1)^{2}+m^{2}+(m+1)^{2}+(m+2)^{2}=1815
$$

and so

$$
\begin{aligned}
m^{2}-4 m+4+m^{2}-2 m+1+m^{2}+m^{2}+2 m+1+m^{2}+4 m+4 & =1815 \\
5 m^{2}+10 & =1815
\end{aligned}
$$

This gives $5 m^{2}=1805$ and so $m^{2}=361$. It follows that $m=\sqrt{361}=19$. The integers are $17,18,19,20,21$.
8. Soln: Expanding,

$$
\left(x^{2}+r x+s\right)\left(x^{2}+t x+u\right)=x^{4}+(t+r) x^{3}+(u+s+t r) x^{2}+(u r+s t) x+s u
$$

Now

$$
x^{4}+(t+r) x^{3}+(u+s+t r) x^{2}+(u r+s t) x+s u=x^{4}+2023 x^{2}+N
$$

means that

$$
\begin{aligned}
t+r & =0 \\
u+s+t r & =2023 \\
u r+s t & =0 \\
\text { and } s u & =N
\end{aligned}
$$

So $t=-r$ and so

$$
\begin{aligned}
u+s-r^{2} & =2023 \\
u r-s r & =r(u-s)=0 \\
\text { and } s u & =N
\end{aligned}
$$

Because $r \neq 0, u-s=0$ or $u=s$. Therefore

$$
\begin{aligned}
r^{2} & =2 u-2023 \\
\text { and } u^{2} & =N
\end{aligned}
$$

N is least when u is least. This occurs when $r^{2}=1$ corresponding with $u=1012$. The least N is $u^{2}=1012^{2}=1024144$.
Note: Here

$$
\left(x^{2}+x+1012\right)\left(x^{2}-x+1012\right)=x^{4}+2023 x^{2}+1024144
$$

