2022-2023 Senior Mathematical Olympiad

Round One Examination (Grades 9, 10 and 11) Solutions

1. Soln: (A) We have $(6 \square 3)+4-1=5$ or $(6 \square 3)=2$. Of the symbols given, \square represents the \div symbol.
2. Soln: (A) $\quad(2022)(2022)^{2022}=(2022)^{1}(2022)^{2022}=(2022)^{1+2022}=(2022)^{2023}$.
3. Soln: (E) $\quad 360=3 \cdot 120=3 \cdot 4 \cdot 30=3 \cdot 4 \cdot 5 \cdot 6$
4. Soln: (A) $2022=2 \times 1011 \times 1$. This result in the largest value of $J+M+O=$ $2+1011+1=1014$
5. Soln: (B) The number is smallest when the leading digits/cards are arranged smallest to largest from left to right. In order, they are

$$
107,31,4,59,8
$$

6. Soln: (C) Since angles on a straight line adds to 180°, the base angles of the triangle are 65° and 55°. The sum of the angles in a triangle is 180° and so $x=180-(65+55)=$ 60
7. Soln: (D) Let $Q Y=x$. The area below $P Q$ is the area of the triangle plus the area of 1 square. This must be equal to 5 squares. So

$$
1+\frac{1}{2} \cdot 5(1+x)=5
$$

This gives $2+5(1+x)=10$ and so $1+x=\frac{8}{5}$ or $x=\frac{3}{5}$. Since $Q Y=x=\frac{3}{5}, X Q=$ $1-x=\frac{2}{5}$ and the ratio $\frac{X Q}{Q Y}=\frac{2}{3}$.
8. Soln: (C) With the straight line $D B$, we construct two right angled triangles. The area of the quadrilateral is now

$$
\frac{1}{2}(A B)(A D)+\frac{1}{2}(C D)(C B)=\frac{1}{2}(11)(3)+\frac{1}{2}(9)(7)=48
$$

9. Soln: (D) Let f be the fixed monthly fee, h be the hourly rate and t, the total connect time in December. We have

$$
f+h t=1248 \text { and } f+h \cdot 2 t=1754
$$

From this, $2 f+2 h t=2496$ and $f+2 h t=1754$. Subtracting, $f=2496-1754=742$.
10. Soln: (C) The perimeter of each shape is $4 \times 9=36 \mathrm{~cm}$. The length of one side of the triangle is therefore $\frac{36}{3}=12 \mathrm{~cm}$. This is the length of the long side of the rectangle. Because $12+12=24$, the short sides add to give 12 cm and the length of the short side is 6 cm .
11. Soln: (A) There is only one choice for the first digit (namely 1). There are 5 choices for the second digit (namely $1,3,5,7,9$) and there are 5 choices for the third digit (namely $1,3,5,7,9)$. The total is $1 \times 5 \times 5=25$
12. Soln: (D) Let the number under the white card be w, the number under the grey card be g and the number under the black card be b. It follows that

$$
\begin{aligned}
g+2 w & =34 \\
g+w+b & =32 \\
w+2 g & =26
\end{aligned}
$$

Adding the first and third equation, $3 g+3 w=60$. Dividing by $3, g+w=20$. Because $g+w=20, b=32-20=12$
13. Soln: (E) The weight of non-water in the watermelon is $\frac{2}{100} \times 20=\frac{2}{5} \mathrm{~kg}$. Let the present weight of the watermelon be $x \mathrm{~kg}$.
The $\frac{2}{5} \mathrm{~kg}$ non-water component now represents $5 \%=\frac{1}{20}$ of x. The value of x is therefore $\frac{2}{5} \times 20=8 \mathrm{~kg}$
14. Soln: (B) Let $O X=O Y=r$ and let $X Y=d$. Using Pythagoras' Theorem, $d^{2}=$ $r^{2}+r^{2}=2 r^{2}$. The areas of $T, T+S$ and $S+C$ are respectively

$$
\frac{1}{2} r \cdot r=\frac{1}{2} r^{2}, \frac{1}{4} \pi r^{2} \text { and } \frac{1}{2} \cdot \pi \frac{d^{2}}{4}=\frac{\pi r^{2}}{4}
$$

It follows that

$$
\frac{\text { Area of } T}{\text { Area of } C}=\frac{\frac{1}{2} r^{2}}{\frac{\pi r^{2}}{4}-\left(\frac{1}{4} \pi r^{2}-\frac{1}{2} r^{2}\right)}
$$

Multiplying through by 4 and dividing by r^{2} :

$$
\frac{\text { Area of } T}{\text { Area of } C}=\frac{2}{\pi-(\pi-2)}=1
$$

15. Soln: (C) Since the area of $P R S$ is half that of $P Q R$ it has the same area as $S R Q$. Because these triangles have the same area and the same altitude (from R to $P Q$), the bases $P S$ and $S Q$ are equal and hence $R S=S Q$. It now follows that $\angle Q S R=120^{\circ}$ and $\angle S R Q=\angle S Q R=30^{\circ}$. So $\angle P R Q=60^{\circ}+30^{\circ}=90^{\circ}$.
16. Soln: (B) Suppose Joe works at x books per hour, then Barney works at $\frac{3}{2} x$ per hour and Adam works at $\frac{5}{2} x$ per hour. For the times specified, the number of books carried is

$$
3\left(\frac{5}{2} x\right)+4\left(\frac{3}{2} x\right)+5 x=999
$$

Multiplying by 2 :

$$
15 x+12 x+10 x=1998
$$

That is, $37 x=1998$ and $x=\frac{1998}{37}=54$. From this, Joe carries $5 \times 54=270$, Barney carries $4 \times \frac{3}{2} \times 54=324$ and Adam carries $3 \times \frac{5}{2} \times 54=405$.
17. Soln: (E) We have

$$
\begin{aligned}
\frac{a}{b}+\frac{b}{a}-a b & =\frac{a^{2}+b^{2}-(a b)^{2}}{a b}=\frac{a^{2}+b^{2}-(a-b)^{2}}{a b} \\
& =\frac{a^{2}+b^{2}-\left(a^{2}+b^{2}-2 a b\right)}{a b}=\frac{2 a b}{a b}=2
\end{aligned}
$$

18. Soln: (E) Let k and j be the number of students in Karen and Jacqui's class. The total number of apples shared is $6 k+6 j$. It follows that

$$
\frac{6 k+6 j}{k}=6+\frac{6 j}{k}=10
$$

From this $\frac{6 j}{k}=4$ and $\frac{k}{6 j}=\frac{1}{4}$ or $\frac{6 k}{j}=\frac{36}{4}=9$. The average for Jacqui's class is

$$
\frac{6 k+6 j}{j}=6+\frac{6 k}{j}=6+9=15 .
$$

19. Soln: (D) Since Dee is three times as old as Bea, Dee can either be 3 or 6 corresponding to Bea being 1 or 2

A	B	C	D	E	F	G	or	A	B	C	D	E	F	G	G
	1		3						2		6				

Because $\mathrm{C}=\mathrm{E}+4$, this means that $\mathrm{C}=5,6$ or 7 . The possibilities are now

$\mathrm{F}>\mathrm{A}$ and $\mathrm{A}>\mathrm{G}$ means $\mathrm{F}>\mathrm{A}>\mathrm{G}$

A	B	C	D	E	F	G		A	B	C	D	E	F	G		A	B	C	D	E	F	G
5	1	6	3	2	7	4	or	4	2	5	6	1	7	3	or	4	2	7	6	3	5	1

Since $A+G>F$, the only possibility is

A	B	C	D	E	F	G
5	1	6	3	2	7	4

So Aaa is 5 .
20. Soln: (A)For x, y, z bags respectively, the average price per kilogram is

$$
\frac{60 x+150 y+250 z}{x+3 y+8 z}=40
$$

So

$$
\begin{aligned}
60 x+150 y+250 z & =40 x+120 y+320 z \\
20 x+30 y & =70 z \\
2 x+3 y & =7 z
\end{aligned}
$$

The smallest integer quantities correspond to $x=2, y=1, z=1$. The smallest number is $2+1+1=4$
21. Soln: (B) Let the legs of the triangle be $2 x$. The length of the long side is therefore $\sqrt{(2 x)^{2}+(2 x)^{2}}=\sqrt{8 x^{2}}=2 \sqrt{2} x$. The area of square P is $x^{2}=45$. The area of square R

$$
\left(\frac{2 \sqrt{2} x}{3}\right)^{2}=\frac{8}{9} x^{2}=\frac{8}{9} \times 45=40
$$

22. Soln: (C) The sum of the first 2 must be even, the sum of the first three must be divisible by 3 , the sum of the first 4 must be divisible by 4 , the sum of the first 5 must be divisible by 5 . The first two numbers must be both even or both odd. On dividing the given numbers by 3 , the remainders are $2,1,2,1,1$ and so the first three numbers must be 76,82 and 91 (91 is the third). The sum is $76+82+91=249$. This is one more than a multiple of 4 and so the fourth number must be 71 and the last 80 .
23. Soln: (B) Because angle $A D P=30^{\circ}$ and $A D=1, D P=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$ and $A P=\frac{\sqrt{3}}{3}$. Because angle $B D C=30^{\circ}$ and $B C=1, D B=2$ and $D C=\sqrt{3}$. It follows that $P B=\sqrt{3}-\frac{\sqrt{3}}{3}=\frac{2 \sqrt{3}}{3}$. The perimeter of $\triangle B D P$ is therefore

$$
D P+P B+D B=\frac{2 \sqrt{3}}{3}+\frac{2 \sqrt{3}}{3}+2=2+\frac{4 \sqrt{3}}{3} .
$$

24. Soln: (B) Let g be the area of the grey region, w the white part of the triangle and p the area of the white part outside the triangle. We are given that

$$
\frac{g}{g+w+p}=\frac{45}{100} \text { and } \frac{w}{g+w+p}=\frac{40}{100}
$$

So $\frac{p}{g+w+p}=\frac{15}{100}$. We want $\frac{p}{g+p}$. Taking $g+w+p$ to be 100 , the ratio of $g: w: p$ is $45: 40: 15$ and

$$
\frac{p}{g+p}=\frac{15}{45+15}=\frac{1}{4}=25 \%
$$

25. Soln: (C) The prime numbers between 4 and 18 are 5, 7, 11, 13, 17. Let the chosen prime numbers be x and y so that the number obtained is

$$
x y-(x+y)=x y-x-y=(x-1)(y-1)-1
$$

Since the primes here are all odd, the required answer must be odd. The least value is $4 \cdot 6-1=23$ and the largest is $12 \cdot 16-1=191$. This eliminates all the answers but 119. Note that $(11-1)(13-1)-1=119$.

