2022-2023 Senior Mathematical Olympiad

Round Two Examination (Grades 7 and 8) - Solutions

SECTION A

1. Soln: (C) We want $\frac{1}{2}\left(1+\frac{1}{100}\right)=\frac{1}{2}+\frac{1}{200}=0.5+0.005=0.505$
2. Soln: (E) From the information given, 30 are not yellow and $\frac{1}{3}(30)=10$ are red. So 20 are are neither yellow nor red. $\frac{3}{4}$ of this which is 15 are white. The corresponding fraction is $\frac{15}{60}=1 / 4$.
3. Soln: (B) Let s, m, ℓ be the number of pages a small, median and large cartridge can print. We have $3 s=2 m$ and $3 m=2 \ell$. From this, $9 s=6 m$ and $6 m=4 \ell$. Therefore $9 s=4 \ell$ and $\ell=\frac{9}{4} s=\frac{9}{4} \times 600=1350$.
4. Soln: (E) Let $\angle P S Q=x^{\circ}$ so that $\angle P Q S=5 x^{\circ}$. Therefore $x^{\circ}+5 x^{\circ}=6 x^{\circ}=90^{\circ}$ and $x=15$. Now $\angle Q S R=\angle P Q S=5 x^{\circ}=5 \times 15^{\circ}=75^{\circ}$.
5. Soln: (B) $50=12 \times 4+2$ and so 50 months is approximately 4 years and 2 months (or 4 years and 8 weeks) $58=52 \times 1+6$ and so 58 weeks is approximately 1 year and 6 weeks (or 1 year and 42 days). So Alfred's present age is approximately $50+4+1=55$ years and $50+42=92$ days. So on his next birthday, he will be 56 years old.
6. Soln: (D) Presently Sarah wins $\frac{49}{100} \times 500=245$ games. If she plays x more games to get to 50%, then

$$
\frac{245+x}{500+x}=\frac{1}{2}
$$

This gives $2 x+490=500+x$ or $x=10$.
7. Soln: (A) Let the length of the square be $x+y=1$. The area of each of the rectangle is therefore $\frac{1}{4}$ and one side of the lowest rectangle is therefore $\frac{1}{4}$. The area of the other rectangles are therefore $\frac{3}{4} y$ and $\frac{3}{8} x$. Solving $\frac{3}{8} x=\frac{1}{4}$. This gives $x=2 / 3$.
8. Soln: (C) If the sum of two primes is prime then one of the prime must be 2 because odd + odd is even which is not prime. The two prime numbers must take the form $p, p+2$. Similarly, the three primes added must ALL be odd. $3+5+7=15$ is not prime. $3+5+11=19$ and $19=17+2$.
9. Soln: (B) 16 rows $(1,3, \ldots, 31)$ has 16 black squares and 15 black squares in the other 15 rows $(2,4, \ldots, 30)$. The total number of black squares is therefore $16^{2}+15^{2}=256+$ $225=481$.
10. Soln: (E) Because $P R$ is a diameter, the angles $\angle P Q R$ and $\angle P S R$ are both right angles. By Pythagoras' Theorem

$$
P R^{2}=P Q^{2}+Q R^{2} \text { and } P R^{2}=P S^{2}+R S^{2} .
$$

Hence $P R^{2}=60^{2}+25^{2}=4225$. Also $P S^{2}=P R^{2}-R S^{2}=4225-52^{2}=1521=39^{2}$. So $P S=39$.

SECTION B

For each question, provide a complete solution by showing all your workings.

1. Solution

The units digit of powers of 3 are $3,9,7,1,3,9,7,1, \cdots$ For example, $3^{7}=2187$. The cycle length is 4 . Now $2022=505 \times 4+2$ and so the 3^{2020} ends in 1 and 3^{2022} ends in 9 and 3^{2023} ends in 7 . Therefore the units digit of $3^{2022}+3^{2023}$ is $6(9+7=16)$.

2. Solution

Let the cost of a Pizza, Chilli and a Burger be p, c and b respectively. We have

$$
\begin{aligned}
2 p+3 c+4 b & =5300 \\
5 p+6 c+7 b & =10700
\end{aligned}
$$

Multiplying the first equation by 2 and subtracting from the second

$$
\begin{aligned}
4 p+6 c+8 b & =10600 \\
5 p+6 c+7 b & =10700
\end{aligned}
$$

gives $p-b=100$. So $p=100+b$. The answer is $\$ 100$.

3. Solution

From the right most column $A+B=10$ (because C is the units). 1 is carried and so $1+A+C=10$ or $1+A+C=20$ (not possible).
So

$$
\begin{aligned}
& A+B=10 \\
& A+C=9
\end{aligned}
$$

Finally, the first column says $A=1$. This results in $B=9$ and $C=8$.
The sum is $198+981+819=1998$.

4. Solution

Let x represent the length of each side of the octagon, which is also the length of the hypotenuse of each of the right triangles. If ℓ is the length of the legs of the right triangles then $\ell^{2}+\ell^{2}=x^{2}$ and so $2 \ell^{2}=x^{2}$ and $\ell=\frac{x}{\sqrt{2}}$. The length of the square is

$$
2 \ell+x=2 \frac{x}{\sqrt{2}}+x=x(\sqrt{2}-1)=10
$$

From this,

$$
x=\frac{10}{\sqrt{2}+1}=\frac{10}{\sqrt{2}+1} \cdot \frac{\sqrt{2}-1}{\sqrt{2}-1}=10(\sqrt{2}-1) .
$$

5. Solution

None of the digits a, b, c, d, e and f may be 0 since this would force two of the others to be equal. Also $d \geq 3, e \geq 3$ and $7 \leq f \leq 9$.
Now $f=7$ means that the d, e pair is $\{3,4\}$. This is not possible because $4=2+2$ or $4=1+3$. So $8 \leq f \leq 9$.

Case $f=8$. The d, e pairs are $\{3,5\}$.In this case, the (a, b, c) triplets are $(2,1,4)$ and $(4,1,2)$.
Case $f=9$. The d, e pairs are $\{3,6\}$ and $\{4,5\}$. For the d, e pair $\{3,6\}$, the (a, b, c) triplets are $(2,1,5),(5,1,2),(1,2,4),(4,2,1)$. For the d, e pair $\{4,5\}$, the (a, b, c) triplets are $(1,3,2)$ and $(2,3,1)$.
The solutions are

$$
\begin{aligned}
& (2,1,4,3,5,8),(4,1,2,5,3,8),(2,1,5,3,6,9),(5,1,2,6,3,9), \\
& (1,2,4,3,6,9),(4,2,1,6,3,9),(1,3,2,4,5,9),(2,3,1,5,4,9) .
\end{aligned}
$$

Note that the equations imply $a+2 b+c=f$.

