Close Menu

Combining Diffusion Tensor Imaging and Susceptibility Weighted Imaging on the Substantia Nigra of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP)-induced Rhesus Monkey Model of Parkinson’s Disease

Journal Authors: 
Issue: 
DOI: 
10.7727/wimj.2016.051
Pages: 
480–6

ABSTRACT

Objective: The aim of this study was to evaluate whether combining diffusion tensor magnetic resonance imaging (DTI) and susceptibility weighted imaging (SWI) techniques would provide a sensitive method for differentiating between 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced rhesus monkey model of Parkinson’s disease (PD) and wild-type controls.

Subjects and Methods: Seventeen rhesus monkeys were divided into two groups. A series of intramuscular injections of either saline (control group, n = 8) or MPTP (0.2 mg/kg body weight; PD group, n = 9) were given to the monkeys, twice a week. Then, SWI and DTI scans were obtained from the monkeys with Siemens Magnetom Verio 3.0T superconductive MRI system. Region of interest analysis was performed on substantia nigra pars compacta (SNc) and substantia nigra pars reticulata (SNr). In addition, immunohistochemical staining of tyrosine hydroxylase was applied to assess degeneration of SN dopaminergic neurons.

Results: Monkeys in the PD group displayed mild to moderate motor symptoms assessed using Kurlan’s scale. With SWI scans, decreased width of SNc but increased width of SNr was found in PD group monkeys compared to controls. Calculation of the ratios of widths of SNc and SNr to the anterior and posterior mesencephalic diameter also reflected narrower SNc but wider SNr than controls. Decreased SWI signal intensity of SNc and SNr suggested iron deposition in both subregions of SN. The DTI scans showed lower fractional anisotropy (FA) values in SNc of the PD group monkeys, while no change of FA values in SNr was detected. Immunohistochemical test displayed generalized loss of dopaminergic neurons in SN of PD group monkeys.

Conclusion: Combining the use of DTI and SWI can provide a sensitive method for differentiating between MPTP-induced rhesus monkey model of PD and wild-type controls. This effective imaging modality might provide additional information for characteristic identification of PD at early stages, thus enhancing the ability to make early diagnosis, and monitor progression of the natural history and treatment effects.

 

Accepted: 
08 Feb, 2016
PDF Attachment: 
e-Published: 18 Apr, 2016
Top of Page